STRONG EXPLORATION RESULTS CONTINUE AT BOTH KARLAWINDA AND MT GIBSON

Highlights

Karlawinda Gold Project (KGP)

- RC drilling at the newly identified Berwick prospect, located 2 kilometres east of the Bibra open pit, has detected near surface gold mineralisation over a 500 metre strike length.
- A 73 hole (10,983 metres) first pass RC drill programme was completed at the Berwick prospect with strong results received including:
- 8 metres @ $14.9 \mathrm{~g} / \mathrm{t}$ from 74 metres • 5 metres @ $9.37 \mathrm{~g} / \mathrm{t}$ from 99 metres
- 4 metres @ $11.25 \mathrm{~g} / \mathrm{t}$ from 45 metres • 6 metres @ $4.11 \mathrm{~g} / \mathrm{t}$ from 47 metres
- 12 metres @ $2.74 \mathrm{~g} / \mathrm{t}$ from 75 metres • 2 metres @ $9.36 \mathrm{~g} / \mathrm{t}$ from 78 metres
- A 5,000 metre infill and extensional RC drilling programme has commenced to follow-up these exciting results.
- A total of 10 RC holes for 1,926 metres of infill drilling was completed at the Vedas prospect located 5 kilometres east of the Bibra open pit with encouraging results received including:
- 8 metres @ $4.36 \mathrm{~g} / \mathrm{t}$ from 84 metres • 10 metres @ $1.51 \mathrm{~g} / \mathrm{t}$ from 145 metres
- 8 metres @ $2.24 \mathrm{~g} / \mathrm{t}$ from 112 metres • 4 metres @ $1.64 \mathrm{~g} / \mathrm{t}$ from 104 metres
- A follow-up extensional and infill RC drill programme is planned for the June 2023 quarter.
- Field composite assays received from drilling completed in the December 2022 quarter at the Carnoustie prospect returned encouraging 1 m split results which included:
- 5 metres @ 4.09g/t from 149 metres
- 5 metres @ $1.21 \mathrm{~g} / \mathrm{t}$ from 158 metres
- A 15,000 metre regional AC drilling programme is scheduled to commence in the June 2023 quarter across the broader KGP tenement package including the Jamie Well East, Donomore and Carrot Hill prospects.

Mt Gibson Gold Project (MGGP)

- A further 15,468 metres of RC resource definition and extensional drilling was completed to the end of March 2023 at the MGGP.
- Assays received from 14 resource definition holes since the last update in January 2023 continue to return exceptional results within and extensional to the resource including:

Outside current resource

- 15 metres @ $7.11 \mathrm{~g} / \mathrm{t}$ from 165 to 180 m • 5 metres @ 16.28g/t from 163 to 168m
- 27 metres @ 1.76g/t from 183 to 210 m • 5 metres @ 8.36g/t from 12 to 17 m
- 4 metres @ 10.04g/t from 204 to 208m • 1 metres @ 33.70g/t from 109 to 110m

Within current resource

- 5 metres @ 11.99g/t from 85 to 90 m
- 8 metres @ 4.95g/t from 43 to 51 m
- 6 metres @ $5.05 \mathrm{~g} / \mathrm{t}$ from 126 to 132 m
- 11 metres @ $5.29 \mathrm{~g} / \mathrm{t}$ from 39 to 50 m
- 9 metres @ $3.37 \mathrm{~g} / \mathrm{t}$ from 30 to 39 m
- 8 metres @ $3.77 \mathrm{~g} / \mathrm{t}$ from 74 to 82 m
- Drilling on the unmined S2, Lexington Waste Dump and Orion North trends (east of the main Gibson trend) continue to define zones of high-grade within and outside the updated 2022 resource shell.
- Regional AC drilling programme at the Outlaw prospect within the Highway/McDonalds area commenced during the reporting period, with 486 holes for 12,838 metres completed.
- Confirmatory AC drilling programme consisting of 329 Aircore holes for 10,867 metres were drilled over existing historic mineralised heap leach dump within the MGGP mine centre.

Mt Gibson Gold Project

Karlawinda Gold Project

Near Mine Exploration

Exploration activities since the last update have focussed on drilling current and newly identified near mine targets at the KGP. A total of 83 RC holes for 12,909 metres were completed across the Vedas prospect and the newly identified Berwick prospect with encouraging results including:

Hole ID	Easting	Northing	From (m)	Depth (\mathbf{m})	Width	Grade (g/t Au)
KBRC1943	206914	7367355	97	106	9	1.18
KBRC1946	206812	7367295	74	82	8	14.9
KBRC1949	203881	7368638	15	27	12	1.28
KBRC1950	204154	7368797	20	30	10	2.03
KBRC1950	204154	7368797	38	54	16	1.23
KBRC1951	203721	7369095	43	67	24	0.64
KBRC1951	203721	7369095	80	82	2	14.92
KBRC1952	203792	7368765	69	93	24	0.71
KBRC1967	209124	7367086	84	92	8	4.36
KBRC1969	209472	7366874	112	120	8	2.24
KBRC1974	206863	7367690	126	130	4	3.4
KBRC1976	206876	7367337	60	64	4	2.81
KBRC1980	209493	7366931	145	155	10	1.51
KBRC1985	206958	7367283	48	52	4	2.73
KBRC1987	206819	7367203	242	248	6	6.54
KBRC1987	206819	7367203	71	75	4	11.25
KBRC1990	206791	7367094	263	264	1	17.28
KBRC1995	206827	7367210	99	104	5	9.37
KBRC1997	206864	7367286	86	95	9	1.33
KBRC1998	206819	7367266	75	87	12	2.74
KBRC1999	206819	7367266	80	83	3	4.02
KBRC2001	207035	7367391	37	41	4	2.86
KBRC2004	206880	7367359	64	66	2	5.06

A comprehensive table of significant results is included in Appendix 1.

Figure 1. Karlawinda current near mine exploration targets
The early success of this programme highlights the potential of the project to host multiple satellite deposits in proximity to existing operations and infrastructure.

Berwick Prospect

During the March 2023 quarter 73 RC holes for 10,983 metres were completed at the newly identified Berwick prospect situated approximately 2 kilometres east of the Bibra open pit (refer to Figure 1). Drilling has identified near surface gold mineralisation over a 500 metre strike. Mineralisation is hosted by silicified bands within migmatite (composite rock found in medium and high-grade metamorphic environments) which appears to be controlled by folding and remains open down dip and along strike.
Several promising results were returned from this first pass drilling programme including:

- 8 metres @ $14.9 \mathrm{~g} / \mathrm{t}$ from 74 metres
- 5 metres @ $9.37 \mathrm{~g} / \mathrm{t}$ from 99 metres
- 4 metres @ $11.25 \mathrm{~g} / \mathrm{t}$ from 45 metres
- 6 metres @ $4.11 \mathrm{~g} / \mathrm{t}$ from 47 metres
- 12 metres @ 2.74 g/t from 75 metres
- 2 metres @ $9.36 \mathrm{~g} / \mathrm{t}$ from 78 metres

A follow up infill and extensional 5,000 metre RC drilling programme has commenced to allow the estimation of a mineral resource in the June 2023 quarter.

Figure 2. Drilling completed at the Berwick prospect with current significant intercept locations

Figure 3: Berwick section with broad and high-grade mineralisation intersected throughout the project area.

Vedas

The Vedas prospect is located 5 kilometres east of the Bibra open pit (refer to Figure 1). During the March 2023 quarter 10 RC holes for 1,926 metres were completed infilling previously reported drill intercepts. Current results confirm a 400 metre strike length which remains open down dip and along strike. Mineralisation at Vedas is analogous with the Bibra deposit, with gold hosted in moderately north dipping zones of intense silica+sericite+biotite+pyirite+asrenopyite alteration bound by magnetite. A 5,000 metre extensional and infill RC drilling programme is planned to commence following the drill out of the Berwick prospect with results used to complete a mineral resource estimate in due course.

Figure 4. Drilling completed at the Muirfield-Vedas trend.

Figure 5. Vedas cross-section with broad mineralisation.

Carnoustie

The Carnoustie prospect is located 5 kilometres northwest of Bibra along the Karlawinda Thrust (refer to Figure 1). A total of 10 RC Holes (2,148 metres) and 31 Aircore holes (2,072 metres) of a near mine drilling programme were completed in the December 2022 quarter targeting a steeply dipping north-south striking structure that had been intersected in previous drilling. Assays received since the last update have identified that mineralisation increases in grade around the fresh rock boundary and remains open down dip and along strike to the north. Follow up drilling is planned in the June 2023 quarter. Significant 1m split results from recent drilling include:

- 5 metres @ $4.09 \mathrm{~g} / \mathrm{t}$ from 149 metres
- 5 metres @ $1.21 \mathrm{~g} / \mathrm{t}$ from 158 metres

Figure 6. Drilling completed at the Carnoustie project with significant intercepts location showing mineralisation intersected along a north south striking corridor.

Regional Exploration

AC Drilling

A 15,000 metre first pass regional AC drilling programme is set to commence across the broader KGP tenement package with drilling planned at the newly defined Carrot Hill, Donomore and Jamie Well East Prospects (refer figure 7). Infill drilling will also be completed at Jamie Well and Forfar to follow up on anomalous Au and pathfinder results from 2022 drilling. The project areas are situated proximal to either the Nanjilgardy Fault or the Sylvania Inlier and Pilbara Craton margin.
The Nanjilgardy Fault is a regional scale structure that is known to have controls on gold mineralisation in the Pilbara craton, including the Paulsens (ASX: BC8) and Ashburton (ASX: KZR) gold projects. Situated on the southern extents of CMM tenure, the Sylvania Inlier and Pilbara Craton margin is considered a high strain zone with high prospectivity for mineralising fluids with origins from igneous intrusions formed from partial melting of a mantle wedge or enriched fluid
remobilisation through regional metamorphism. This Craton boundary is interpreted to play a significant role in the placement of ore forming fluids at the +2 Moz Bibra gold deposit.

Figure 7. Karlawinda regional and near mine exploration targets
Carrot Hill is located 7 kilometres NW of Bibra along the Karlawinda Thrust zone. Drilling will cover 700 hectares testing coinciding gravity and magnetic highs, and anomalous soil high temperature path finders known to be associated with intrusion related gold systems (Au, As, Cu, Mo, Pb, W).
The Donomore prospect is located along the Sylvania Inlier and Pilbara Craton margin. The prospect sits entirely undercover and consists of 5 kilometres of northwest trending magnetic high anomalies that are crosscut by the regional scale Fortescue Fault and is along strike from the historic Deadmans Flat mine.
In 2022 regional first pass AC was completed at Jaime Well, 50 kilometres northeast of Bibra. Infill drilling will be completed next quarter following up on anomalous $\mathrm{Au}(4 \mathrm{~m} @ 0.5 \mathrm{~g} / \mathrm{t}$ from 16 m in KBAC2617) and pathfinders intersected along shear zones. The area consists of basalt, dolerite, sediments, and chlorite schist/ultramafic rocks.
Ethnographic clearance surveys have been completed on the Mumbakine Well tenement acquired in 2022. The tenement is contiguous to Capricorn's KGP tenure and is less than 10 kilometres from the processing facility and Bibra open pit. A 1,000 sample soil program is set to commence in the June 2023 quarter.

Mt Gibson Gold Project

Near mine RC Drilling

Exploration activities at the MGGP during the March 2023 quarter focussed on progressing the extensional and infill resource drilling that commenced in January 2022. One RC rig continued during the March 2023 quarter completing 9,785 metres of drilling taking the total RC drilling to date to 130,607 metres (784 holes).

Figure 8. Completed drilling over the MGGP 8km long mine trend along with remaining current resource drillng, first pass western exploration holes and sterilisation drilling.

Assays have now been received from the first 672 holes from the projects resource definition drilling. A total of 1,853 holes for 174,465 metres of resource, regional exploration and mine development drilling has been completed at the MGGP since January 2022. Assays received since the last update continue to return very encouraging results, including:

Hole ID	Easting	Northing	From (m)	Depth (m)	Width	Grade (g/t Au)
CMHL039	515702	6708859	15	19	4	3.36
CMHL048	515775	6708791	10	24	14	1.10
CMHL141	515806	6708887	21	23	2	5.94
CMHL155	515798	6708708	1	16	15	0.84
CMHL161**	515641	6708735	12	17	5	8.36
CMHL167	515563	6708731	2	21	19	0.85
CMRC0410	517333	6711617	85	90	5	11.99
CMRC0422*	516949	6710414	70	71	1	23.80
CMRC0486***	517208	6711219	24	28	4	2.80
CMRC0556	517991	6712829	52	56	4	2.60
CMRC0561	516266	6707754	39	50	11	5.29
CMRC0562	516167	6708864	30	39	9	3.37
CMRC0562	516111	6708867	134	138	4	6.85
CMRC0567	516516	6709822	62	72	10	1.65
CMRC0567	516512	6709825	75	83	8	2.16
CMRC0569*	516322	6707777	144	155	11	1.24
CMRC0570	516546	6710054	62	75	13	1.05
CMRC0573	516580	6710093	88	94	6	1.81
CMRC0573	516617	6710069	154	160	6	2.45
CMRC0574	516816	6710584	139	146	7	2.22
CMRC0574	516800	6710589	171	175	4	4.37
CMRC0574	516783	6710595	204	208	4	10.04
CMRC0575	516828	6710501	83	88	5	2.95
CMRC0576	516798	6710504	138	154	16	1.66
CMRC0576	516790	6710506	159	173	14	1.89
CMRC0578	516766	6710390	126	132	6	5.05
CMRC0578	516828	6710374	0	1	1	13.05
CMRC0578	516757	6710393	147	152	5	2.11
CMRC0578	516754	6710394	156	159	3	3.63
CMRC0578	516750	6710394	163	168	5	16.28
CMRC0603	516804	6710510	165	180	15	7.11
CMRC0603	516794	6710514	183	210	27	1.76
CMRC0604	516810	6710546	167	177	10	1.21
CMRC0604	516798	6710550	189	210	21	1.13
CMRC0605	516845	6710664	132	134	2	10.25
CMRC0605	516823	6710672	179	193	14	1.68
CMRC0605*	516811	6710677	213	216	3	7.20
CMRC0608	516766	6710310	77	81	4	2.80
CMRC0610	516742	6710276	109	110	1	33.70
CMRC0611*	516716	6710284	194	204	10	1.92
CMRC0613	516736	6710242	43	51	8	4.95
CMRC0613	516695	6710268	111	129	18	0.96
CMRC0614	516726	6710226	74	82	8	3.77
CMRC0614	516718	6710230	96	100	4	2.54

[^0]A comprehensive table of significant results is included in Appendix 1.
Results of this additional drilling will form the basis to update the 2.755 million ounce MRE targeted for completion in the June 2023 quarter.
Current and previously reported drilling at the depth extremities of the resource optimisation shells (where historic drill density is broader spaced) and below them has returned results consistent with Capricorn's geological interpretations of mineralisation location, widths and grade tenor. Drilling across the project to date indicates that mineralisation remains open down dip and along strike to the north and south with multiple stacked lodes intersected.

S2, Lexington Waste Dump and Orion North trend

Drilling on the unmined S2, Lexington Waste Dump and Orion North trends (east of the main Gibson trend) continues to define zones of high-grade within and outside the updated 2022 resource shell (refer Figure's 9-11).

Cross Sections

The plan in Figure 8 above shows the drilling activity from the infill and extensional RC programme and the location of the following long and cross sections.

Figure 9. Lexington Pit and Waste Dump Section with significant broad high-grade mineralisation intersected outside of the current A\$1,900/oz Reserve Outline

Figure 10. Lexington Waste Dump Section with significant broad high-grade mineralisation intersected outside of the current A\$1,900/oz Reserve Outline

Figure 11. S2 Section with significant broad mineralisation intersected outside of the current A\$2,2000/oz Resource Outline

Regional Exploration

First pass Aircore drilling at The Outlaw prospect within the Highway/McDonalds area commenced during the March 2023 quarter with 486 holes for 12,838 metres completed. The Highway/McDonalds area is located 5 kilometres north of the current resources and has been identified as a significant exploration target. The area has a prospective geological and structural setting with much of the area covered by up to 20 metres of transported cover.

Approximately half of the results have been returned to date. Encouraging zones of anomalous Au and pathfinders including Ag, Cu, and As associated with north east striking shear zones within amphibolite rocks have been identified. 50 metre spaced infill drilling has been completed around areas of interest with results due in the June 2023 quarter. Encouraging first pass 4 metre composite Au results include:

- 4 metres @ 0.55g/t From 8 to $12 m$
- 4 metres @ 0.94g/t From 16 to 20m
- 4 metres @ 0.65g/t from 44 to $38 m$
- 4 metres @ 0.60 g/t From 4 to 8m

The area represents a unique opportunity to discover economic deposits close to surface on underexplored ground with significant historical workings located across Capricorn tenure. Drilling has confirmed the mineralisation is within amphibolite hosted shear zones in a similar orientation and geological setting to the nearby Mt Gibson Mine Trend.

Figure 12. Completed AC drilling at the Outlaw prospect with known historic gold occurrences and current Capricorn significant gold intercepts

Heap Leach Dump Drilling

329 Aircore holes for 10,867 metres were drilled during the March 2023 quarter over an existing historic heap leach dump within the MGGP mine centre. In 2002 the 4 mt dump leach was drilled by Oriole Resources Ltd to evaluate residual grades. WAMEX reporting outlines that a total of 141 holes of Aircore were drilled for 2,581 metres ${ }^{1}$.

The drilling was designed to increase confidence in gold distribution and to aid in any future maiden JORC compliant resource estimations. Approximately 70% of assays have been received with final results expected to be returned in the June 2023 quarter. Significant results include:

- 5 metres @ 8.36g/t From 12 to $17 m$
- 14 metres@1.1g/t From 10 to 24m
- 19 metres @ 0.85g/t From 2 to $21 m$
- 15 metres @ 0.84 g/t From 1 to $16 m$

Completed resource drilling at the Orion pit looking northwest towards the current heap leach dump.
${ }^{1}$ WAMEX report A53618, Mt. Gibson Project M59/11, 13-17, 166, 217, 304, 305, 308, 309, 328, 402-404 Combined Interim Report for Period 31/1/2001-30/1/2002 South Murchison Mineral Field GSWA Ref C246/1993.

This announcement has been authorised for release by the Capricorn Metals Ltd board.

For further information, please contact:

Mr Kim Massey
Chief Executive Officer
E: enquiries@capmet.com.au
T: +61 892124600

Forward Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation of belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis. The detailed reasons for that conclusion are outlined throughout this announcement and all material assumptions are disclosed.
However, forward looking statements are subject to risks, uncertainties, assumptions and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements.

Such risks include, but are not limited to resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as governmental regulation and judicial outcomes.
For a more detailed discussion of such risks and other factors, see the Company's Annual Reports, as well as the Company's other filings. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Mr. William Higgins who is a full-time employee of the Company. Mr. Higgins is a current Member of the Australian Institute of Geoscientists and has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Higgins consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.
The detailed information relating to the Ore Reserves and Mineral Resources reported in this announcement were announced in the Company's ASX announcements dated 27 October 2022, 7 November 2022 and 19 April 2023. The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcements dated 27 October 2022, 7 November 2022 and 19 April 2023 and all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.capmetals.com.au .

The Competent Person's consents remain in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by subsequent report and accompanying consent

APPENDIX 1 - SIGINIFICANT RESULTS

Mt Gibson									
Hole No	Easting	Northing	RL	Hole Depth	Dip/Azi	From	To	Width	$\begin{gathered} \text { Grade (g/t } \\ \mathrm{Au}) \end{gathered}$
CMAC0005	517719	6717625	320	57	-90/0	44	48	4	0.65
CMAC0112	516827	6716416	320	19	-90/0	8	12	4	0.55
CMAC0353	517026	6715035	320	34	-90/0	4	8	4	0.6
CMAC0355	516820	6715029	320	36	-90/0	16	20	4	0.94
CMHLOO1	515702.8	6708846.2	385.21	29	-90/0	0	6	6	0.68
CMHL001	515702.8	6708846.2	385.21	29	-90/0	16	18	2	1.02
CMHLOO2	515677.7	6708843.1	385.366	36	-90/0	2	10	8	0.73
CMHLOO2	515677.7	6708843.1	385.366	36	-90/0	18	20	2	1.06
CMHLOO3	515652	6708843.3	385.312	42	-90/0	1	2	1	0.52
CMHLOO3	515652	6708843.3	385.312	42	-90/0	9	14	5	0.52
CMHLOO3	515652	6708843.3	385.312	42	-90/0	25	26	1	0.51
CMHLOO4	515626.2	6708842.1	385.956	35	-90/0	28	33	5	0.47
CMHLOO5	515602.4	6708841.9	385.608	34	-90/0	28	33	5	0.85
CMHL006	515575.9	6708841.9	385.82	35	-90/0	10	23	13	0.5
CMHL006	515575.9	6708841.9	385.82	35	-90/0	27	29	2	0.85
CMHL007	515527.9	6708826.5	386.232	36	-90/0	10	11	1	0.52
CMHL007	515527.9	6708826.5	386.232	36	-90/0	18	19	1	0.77
CMHLOO7	515527.9	6708826.5	386.232	36	-90/0	28	31	3	0.72
CMHL007	515527.9	6708826.5	386.232	36	-90/0	34	35	1	0.6
CMHL008	515538.6	6708827.3	386.14	35	-90/0	8	9	1	1.57
CMHLOO9	515553.1	6708828.5	386.105	35	-90/0	3	5	2	0.84
CMHLOO9	515553.1	6708828.5	386.105	35	-90/0	9	10	1	0.53
CMHL009	515553.1	6708828.5	386.105	35	-90/0	23	24	1	0.52
CMHL009	515553.1	6708828.5	386.105	35	-90/0	32	33	1	0.53
CMHL010	515563.3	6708828.8	385.984	35	-90/0	6	10	4	0.49
CMHL010	515563.3	6708828.8	385.984	35	-90/0	13	21	8	0.69
CMHLO10	515563.3	6708828.8	385.984	35	-90/0	25	26	1	0.75
CMHL011	515574.6	6708829.4	385.98	35	-90/0	2	8	6	0.5
CMHL011	515574.6	6708829.4	385.98	35	-90/0	11	22	11	0.57
CMHL012	515591.8	6708830.4	385.63	35	-90/0	6	9	3	1.18
CMHL012	515591.8	6708830.4	385.63	35	-90/0	17	20	3	0.82
CMHL013	515603.1	6708830.9	385.762	35	-90/0	7	10	3	0.47
CMHL013	515603.1	6708830.9	385.762	35	-90/0	15	16	1	0.53
CMHL014	515612.2	6708831.5	385.703	33	-90/0	15	17	2	1.17
CMHL015	515642.2	6708831.9	385.254	35	-90/0	7	8	1	0.55
CMHL015	515642.2	6708831.9	385.254	35	-90/0	22	32	10	0.65
CMHL016	515652	6708831.9	385.451	36	-90/0	9	17	8	0.47
CMHL016	515652	6708831.9	385.451	36	-90/0	23	28	5	0.6
CMHL016	515652	6708831.9	385.451	36	-90/0	31	32	1	0.82
CMHL017	515665	6708831.5	385.515	36	-90/0	10	14	4	0.66
CMHL017	515665	6708831.5	385.515	36	-90/0	18	19	1	0.58
CMHL018	515678.6	6708831.7	385.444	36	-90/0	3	6	3	1.14

CMHLO18	515678.6	6708831.7	385.444	36	-90/0	15	19	4	0.62
CMHLO19	515690.7	6708832.2	385.506	36	-90/0	1	2	1	0.85
CMHLO19	515690.7	6708832.2	385.506	36	-90/0	13	14	1	0.55
CMHLO20	515703.4	6708833.1	385.53	36	-90/0	14	15	1	0.86
CMHLO2O	515703.4	6708833.1	385.53	36	-90/0	20	21	1	0.65
CMHLO22	515501.6	6708841.2	382.495	35	-90/0	14	15	1	1.05
CMHLO22	515501.6	6708841.2	382.495	35	-90/0	22	23	1	0.53
CMHLO23	515515.3	6708841.8	384.052	34	-90/0	22	23	1	0.64
CMHLO24	515528.7	6708842.1	384.824	35	-90/0	21	22	1	0.8
CMHLO26	515552.9	6708842.1	384.998	36	-90/0	12	14	2	0.66
CMHLO27	515555.6	6708851.7	384.45	36	-90/0	4	6	2	0.76
CMHLO27	515555.6	6708851.7	384.45	36	-90/0	10	12	2	0.51
CMHLO28	515568	6708852.2	384.23	36	-90/0	0	2	2	0.67
CMHLO28	515568	6708852.2	384.23	36	-90/0	7	15	8	0.66
CMHLO28	515568	6708852.2	384.23	36	-90/0	18	19	1	1.15
CMHLO28	515568	6708852.2	384.23	36	-90/0	22	23	1	0.72
CMHLO29	515578.6	6708853.3	384.098	36	-90/0	9	11	2	0.65
CMHLO29	515578.6	6708853.3	384.098	36	-90/0	15	21	6	0.64
CMHLO30	515590.9	6708854	383.757	36	-90/0	1	2	1	0.69
CMHLO30	515590.9	6708854	383.757	36	-90/0	11	18	7	0.58
CMHL030	515590.9	6708854	383.757	36	-90/0	34	35	1	0.51
CMHL031	515603.2	6708854.7	383.335	36	-90/0	2	4	2	0.72
CMHL031	515603.2	6708854.7	383.335	36	-90/0	18	20	2	0.67
CMHL031	515603.2	6708854.7	383.335	36	-90/0	30	31	1	0.52
CMHLO31	515603.2	6708854.7	383.335	36	-90/0	34	35	1	0.54
CMHLO32	515617.2	6708854.8	383.052	36	-90/0	7	8	1	0.54
CMHL032	515617.2	6708854.8	383.052	36	-90/0	16	19	3	0.49
CMHLO33	515627.1	6708855.5	382.885	35	-90/0	18	21	3	0.61
CMHL033	515627.1	6708855.5	382.885	35	-90/0	28	29	1	0.56
CMHLO34	515640.6	6708855.4	382.675	33	-90/0	15	20	5	0.66
CMHLO34	515640.6	6708855.4	382.675	33	-90/0	24	25	1	0.6
CMHLO35	515651.1	6708855.5	382.564	33	-90/0	4	5	1	0.54
CMHL035	515651.1	6708855.5	382.564	33	-90/0	9	10	1	0.83
CMHLO35	515651.1	6708855.5	382.564	33	-90/0	20	23	3	0.48
CMHLO36	515666.8	6708856.5	382.273	33	-90/0	5	6	1	0.62
CMHL037	515676.4	6708857.1	382.26	35	-90/0	2	3	1	0.86
CMHL037	515676.4	6708857.1	382.26	35	-90/0	14	15	1	1.42
CMHL037	515676.4	6708857.1	382.26	35	-90/0	22	23	1	0.73
CMHL038	515689.5	6708857.3	382.167	33	-90/0	9	21	12	0.67
CMHL039	515702.3	6708858.9	381.45	33	-90/0	15	19	4	3.36
CMHLO40	515715.1	6708860.9	381.022	33	-90/0	0	1	1	1.84
CMHLO40	515715.1	6708860.9	381.022	33	-90/0	19	20	1	0.6
CMHLO40	515715.1	6708860.9	381.022	33	-90/0	23	25	2	0.81
CMHLO41	515726.6	6708862	380.371	33	-90/0	17	19	2	0.53

Hole No	Easting	Northing	RL	Hole Depth	Dip/Azi	From	To	Width	$\begin{gathered} \text { Grade }(\mathrm{g} / \mathrm{t} \\ \mathrm{Au}) \end{gathered}$
CMHLO41	515726.6	6708862	380.371	33	-90/0	25	26	1	0.63
CMHLO42	515738.8	6708861.7	380.241	33	-90/0	22	25	3	0.5
CMHLO43	515754.8	6708861.1	379.947	33	-90/0	17	19	2	0.57
CMHLO43	515754.8	6708861.1	379.947	33	-90/0	22	28	6	0.79
CMHLO44	515768.4	6708862	379.969	33	-90/0	6	7	1	0.53
CMHLO44	515768.4	6708862	379.969	33	-90/0	10	16	6	0.52
CMHLO44	515768.4	6708862	379.969	33	-90/0	20	22	2	1.35
CMHLO44	515768.4	6708862	379.969	33	-90/0	25	26	1	0.92
CMHLO45	515776.6	6708862	379.946	33	-90/0	4	5	1	0.69
CMHLO45	515776.6	6708862	379.946	33	-90/0	22	26	4	0.74
CMHLO46	515772.1	6708840.2	379.989	33	-90/0	12	16	4	0.57
CMHLO46	515772.1	6708840.2	379.989	33	-90/0	25	26	1	0.88
CMHL047	515774.2	6708816.6	379.925	33	-90/0	2	5	3	0.8
CMHL047	515774.2	6708816.6	379.925	33	-90/0	12	15	3	1.62
CMHLO47	515774.2	6708816.6	379.925	33	-90/0	24	25	1	0.91
CMHLO48	515774.8	6708790.9	380.101	69	-90/0	10	24	14	1.1
CMHLO48	515774.8	6708790.9	380.101	69	-90/0	31	32	1	0.61
CMHL049	515774.6	6708765.9	379.804	33	-90/0	9	11	2	0.88
CMHLO49	515774.6	6708765.9	379.804	33	-90/0	18	20	2	0.83
CMHL049	515774.6	6708765.9	379.804	33	-90/0	24	25	1	1.5
CMHL049	515774.6	6708765.9	379.804	33	-90/0	28	29	1	0.63
CMHL050	515776.3	6708749.1	379.477	33	-90/0	11	12	1	0.5
CMHL050	515776.3	6708749.1	379.477	33	-90/0	30	32	2	0.85
CMHL051	515753	6708720.8	378.495	30	-90/0	12	25	13	0.7
CMHLO52	515733	6708720.7	378.318	30	-90/0	7	11	4	0.48
CMHL052	515733	6708720.7	378.318	30	-90/0	14	19	5	0.54
CMHL052	515733	6708720.7	378.318	30	-90/0	29	30	1	0.65
CMHL053	515713	6708719.6	376.916	27	-90/0	10	11	1	0.91
CMHL053	515713	6708719.6	376.916	27	-90/0	15	16	1	0.55
CMHL054	515683.7	6708721.6	378.146	27	-90/0	6	9	3	0.62
CMHL054	515683.7	6708721.6	378.146	27	-90/0	13	14	1	0.7
CMHL054	515683.7	6708721.6	378.146	27	-90/0	21	22	1	1.03
CMHL055	515653.7	6708721.9	378.548	27	-90/0	9	16	7	0.8
CMHL055	515653.7	6708721.9	378.548	27	-90/0	19	22	3	0.62
CMHL056	515628.8	6708721.6	378.438	30	-90/0	1	3	2	0.57
CMHL056	515628.8	6708721.6	378.438	30	-90/0	9	10	1	0.84
CMHL056	515628.8	6708721.6	378.438	30	-90/0	17	22	5	0.89
CMHL057	515606.1	6708720.8	379.299	36	-90/0	7	10	3	0.48
CMHL057	515606.1	6708720.8	379.299	36	-90/0	15	16	1	0.53
CMHL057	515606.1	6708720.8	379.299	36	-90/0	26	27	1	1.04
CMHL058	515578.3	6708718.8	380.211	33	-90/0	1	9	8	0.62
CMHL058	515578.3	6708718.8	380.211	33	-90/0	13	14	1	0.83
CMHL058	515578.3	6708718.8	380.211	33	-90/0	23	24	1	0.59

CMHL059	515553.9	6708717.8	380.48	33	-90/0	6	16	10	0.64
CMHL059	515553.9	6708717.8	380.48	33	-90/0	25	26	1	0.63
CMHL060	515528.7	6708718.1	381.066	39	-90/0	1	3	2	0.61
CMHL060	515528.7	6708718.1	381.066	39	-90/0	10	22	12	0.7
CMHL061	515505.4	6708718.5	380.558	33	-90/0	2	3	1	0.54
CMHL061	515505.4	6708718.5	380.558	33	-90/0	6	7	1	0.75
CMHL061	515505.4	6708718.5	380.558	33	-90/0	10	18	8	0.6
CMHL061	515505.4	6708718.5	380.558	33	-90/0	21	22	1	0.53
CMHL061	515505.4	6708718.5	380.558	33	-90/0	25	26	1	1.52
CMHL062	515476	6708740.2	382.271	33	-90/0	2	7	5	0.75
CMHL062	515476	6708740.2	382.271	33	-90/0	18	25	7	0.56
CMHL063	515478.2	6708749.3	382.955	36	-90/0	1	2	1	0.6
CMHL063	515478.2	6708749.3	382.955	36	-90/0	8	9	1	0.73
CMHL063	515478.2	6708749.3	382.955	36	-90/0	22	24	2	0.6
CMHL063	515478.2	6708749.3	382.955	36	-90/0	28	29	1	0.92
CMHL064	515480.5	6708766	382.629	33	-90/0	31	32	1	0.53
CMHL065	515481.1	6708781.3	382.682	33	-90/0	7	10	3	0.54
CMHL065	515481.1	6708781.3	382.682	33	-90/0	15	16	1	0.74
CMHL065	515481.1	6708781.3	382.682	33	-90/0	30	32	2	0.58
CMHL066	515482.1	6708791.8	382.965	33	-90/0	32	33	1	0.6
CMHL068	515480.9	6708819	382.714	36	-90/0	20	21	1	0.51
CMHL069	515489.8	6708829.8	382.892	33	-90/0	6	7	1	0.65
CMHL069	515489.8	6708829.8	382.892	33	-90/0	16	17	1	0.62
CMHL069	515489.8	6708829.8	382.892	33	-90/0	20	21	1	1.22
CMHL069	515489.8	6708829.8	382.892	33	-90/0	29	30	1	0.63
CMHLO70	515480.5	6708848.5	378.331	30	-90/0	6	9	3	0.49
CMHL071	515503.5	6708850.9	381.08	33	-90/0	3	4	1	0.6
CMHL071	515503.5	6708850.9	381.08	33	-90/0	26	27	1	0.59
CMHL072	515528.3	6708853.7	381.615	35	-90/0	12	13	1	0.6
CMHLO72	515528.3	6708853.7	381.615	35	-90/0	16	17	1	1.83
CMHL073	515494	6708861.5	378.333	33	-90/0	12	16	4	0.47
CMHL075	515520.9	6708865.8	379.098	33	-90/0	7	11	4	2.13
CMHL076	515531.1	6708867	379.129	33	-90/0	8	9	1	0.5
CMHL076	515531.1	6708867	379.129	33	-90/0	13	18	5	1.79
CMHL077	515541.7	6708868	379.264	33	-90/0	4	5	1	0.68
CMHL078	515552.7	6708869.2	379.535	33	-90/0	11	17	6	0.55
CMHL079	515601.4	6708868.3	379.613	33	-90/0	8	16	8	0.77
CMHL080	515627	6708869.1	378.71	33	-90/0	3	4	1	0.6
CMHL080	515627	6708869.1	378.71	33	-90/0	21	25	4	0.62
CMHL081	515651.6	6708869.9	378.317	30	-90/0	2	10	8	1.08
CMHL082	515702.1	6708870.1	378.742	25	-90/0	13	16	3	0.69
CMHL083	515725.7	6708872	377.761	30	-90/0	14	15	1	0.86
CMHL083	515725.7	6708872	377.761	30	-90/0	22	23	1	1.22
CMHL084	515793.8	6708862.3	375.176	30	-90/0	1	6	5	0.6
CMHL084	515793.8	6708862.3	375.176	30	-90/0	18	21	3	0.78

CMHL084	515793.8	6708862.3	375.176	30	-90/0	25	26	1	0.75
CMHL085	515801	6708841.1	373.804	30	-90/0	2	4	2	0.91
CMHL085	515801	6708841.1	373.804	30	-90/0	26	27	1	0.58
CMHL086	515804.6	6708817.5	373.381	27	-90/0	2	6	4	0.69
CMHL086	515804.6	6708817.5	373.381	27	-90/0	9	10	1	0.75
CMHL086	515804.6	6708817.5	373.381	27	-90/0	19	20	1	0.59
CMHL086	515804.6	6708817.5	373.381	27	-90/0	25	27	2	0.55
CMHL087	515807.5	6708790.8	372.561	27	-90/0	4	5	1	0.57
CMHL087	515807.5	6708790.8	372.561	27	-90/0	9	10	1	1.17
CMHL087	515807.5	6708790.8	372.561	27	-90/0	13	17	4	0.63
CMHL087	515807.5	6708790.8	372.561	27	-90/0	23	25	2	0.97
CMHL088	515810.2	6708766	372.389	27	-90/0	6	12	6	0.74
CMHL088	515810.2	6708766	372.389	27	-90/0	24	27	3	1.38
CMHL089	515806.1	6708738.8	372.439	27	-90/0	1	2	1	1.01
CMHL089	515806.1	6708738.8	372.439	27	-90/0	7	13	6	0.86
CMHL089	515806.1	6708738.8	372.439	27	-90/0	24	25	1	0.75
CMHL090	515792.5	6708723.2	372.737	27	-90/0	7	8	1	0.5
CMHL090	515792.5	6708723.2	372.737	27	-90/0	13	16	3	0.75
CMHL090	515792.5	6708723.2	372.737	27	-90/0	24	27	3	1.46
CMHL091	515777.8	6708706.6	372.772	27	-90/0	0	8	8	0.49
CMHL091	515777.8	6708706.6	372.772	27	-90/0	22	23	1	0.55
CMHL113	515463.9	6708738.8	379.556	30	-90/0	0	1	1	0.54
CMHL113	515463.9	6708738.8	379.556	30	-90/0	5	6	1	0.57
CMHL113	515463.9	6708738.8	379.556	30	-90/0	16	17	1	0.71
CMHL114	515466.1	6708764.8	380.401	33	-90/0	1	2	1	0.59
CMHL114	515466.1	6708764.8	380.401	33	-90/0	24	26	2	0.96
CMHL115	515466	6708817.6	379.497	36	-90/0	17	18	1	0.76
CMHL115	515466	6708817.6	379.497	36	-90/0	29	30	1	0.5
CMHL117	515480.2	6708861.4	377.922	29	-90/0	7	10	3	0.58
CMHL117	515480.2	6708861.4	377.922	29	-90/0	20	21	1	0.82
CMHL118	515506	6708875.3	376.237	30	-90/0	0	3	3	1.4
CMHL118	515506	6708875.3	376.237	30	-90/0	23	24	1	0.59
CMHL119	515517.9	6708877.4	376.001	30	-90/0	3	9	6	2.12
CMHL120	515528.1	6708878.7	375.936	30	-90/0	9	14	5	2.78
CMHL121	515539.5	6708879.7	376.108	30	-90/0	4	8	4	0.58
CMHL121	515539.5	6708879.7	376.108	30	-90/0	23	24	1	0.54
CMHL122	515554.6	6708879.5	376.271	30	-90/0	2	4	2	0.72
CMHL122	515554.6	6708879.5	376.271	30	-90/0	9	14	5	0.84
CMHL123	515565.4	6708880.5	376.627	33	-90/0	4	10	6	0.49
CMHL124	515580.1	6708880.5	377.047	30	-90/0	4	11	7	0.52
CMHL124	515580.1	6708880.5	377.047	30	-90/0	24	25	1	1.16
CMHL124	515580.1	6708880.5	377.047	30	-90/0	28	30	2	0.7
CMHL125	515591.6	6708880.4	376.753	30	-90/0	9	11	2	0.65
CMHL125	515591.6	6708880.4	376.753	30	-90/0	29	30	1	0.66
CMHL126	515602.4	6708880.7	376.415	30	-90/0	4	5	1	0.64

CMHL127	515616.7	6708881.4	375.86	30	-90/0	27	28	1	0.59
CMHL129	515641.8	6708883.2	375.468	30	-90/0	14	16	2	0.66
CMHL129	515641.8	6708883.2	375.468	30	-90/0	20	21	1	0.65
CMHL130	515654.1	6708883.7	375.371	30	-90/0	4	10	6	0.75
CMHL130	515654.1	6708883.7	375.371	30	-90/0	18	19	1	0.55
CMHL131	515666.6	6708883.4	375.38	30	-90/0	7	9	2	0.55
CMHL131	515666.6	6708883.4	375.38	30	-90/0	17	18	1	0.51
CMHL132	515679.2	6708883.7	375.41	30	-90/0	15	16	1	0.77
CMHL133	515689	6708883.9	375.413	30	-90/0	18	21	3	2.43
CMHL134	515702.4	6708885.3	375.149	27	-90/0	10	11	1	0.7
CMHL134	515702.4	6708885.3	375.149	27	-90/0	17	22	5	0.81
CMHL135	515715.2	6708885.6	375.015	21	-90/0	17	21	4	1.14
CMHL137	515740.1	6708886.4	374.199	27	-90/0	9	10	1	0.56
CMHL137	515740.1	6708886.4	374.199	27	-90/0	18	20	2	0.76
CMHL138	515751.5	6708886.9	373.775	27	-90/0	19	20	1	1.48
CMHL139	515764.3	6708886.8	373.581	27	-90/0	5	8	3	0.99
CMHL139	515764.3	6708886.8	373.581	27	-90/0	12	13	1	0.57
CMHL140	515790.3	6708885.2	372.874	30	-90/0	3	13	10	0.77
CMHL141	515806.2	6708886.6	372.471	27	-90/0	4	5	1	0.86
CMHL141	515806.2	6708886.6	372.471	27	-90/0	12	17	5	1.04
CMHL141	515806.2	6708886.6	372.471	27	-90/0	21	23	2	5.94
CMHL142	515804.4	6708869.9	372.574	27	-90/0	0	2	2	0.73
CMHL153	515820.7	6708741.8	370.143	24	-90/0	18	19	1	0.56
CMHL153	515820.7	6708741.8	370.143	24	-90/0	22	23	1	0.65
CMHL154	515813.5	6708725.6	370.153	24	-90/0	10	12	2	0.75
CMHL154	515813.5	6708725.6	370.153	24	-90/0	23	24	1	0.5
CMHL155	515798.4	6708707.5	369.96	24	-90/0	1	16	15	0.84
CMHL155	515798.4	6708707.5	369.96	24	-90/0	20	24	4	0.72
CMHL156	515730.1	6708731.8	380.069	33	-90/0	6	7	1	0.65
CMHL156	515730.1	6708731.8	380.069	33	-90/0	30	33	3	1.04
CMHL157	515710.4	6708732.2	379.911	33	-90/0	7	11	4	0.58
CMHL157	515710.4	6708732.2	379.911	33	-90/0	15	16	1	0.55
CMHL158	515683.9	6708733.1	380.923	33	-90/0	0	3	3	0.48
CMHL158	515683.9	6708733.1	380.923	33	-90/0	9	12	3	0.57
CMHL158	515683.9	6708733.1	380.923	33	-90/0	21	24	3	1.19
CMHL159	515664.9	6708733.2	381.316	33	-90/0	4	5	1	0.63
CMHL159	515664.9	6708733.2	381.316	33	-90/0	17	20	3	0.52
CMHL159	515664.9	6708733.2	381.316	33	-90/0	24	25	1	0.58
CMHL160	515654.3	6708733.9	381.42	33	-90/0	0	1	1	0.66
CMHL160	515654.3	6708733.9	381.42	33	-90/0	10	22	12	0.63
CMHL160	515654.3	6708733.9	381.42	33	-90/0	26	27	1	0.54
CMHL161	515641.9	6708735	382.213	33	-90/0	1	8	7	0.85
CMHL161	515641.9	6708735	382.213	33	-90/0	12	17	5	8.36
CMHL161	515641.9	6708735	382.213	33	-90/0	23	25	2	0.56
CMHL162	515628.9	6708735.9	383.274	36	-90/0	4	7	3	0.72

CMHL162	515628.9	6708735.9	383.274	36	-90/0	12	16	4	0.7
CMHL162	515628.9	6708735.9	383.274	36	-90/0	21	22	1	0.87
CMHL162	515628.9	6708735.9	383.274	36	-90/0	26	27	1	0.68
CMHL163	515614.8	6708735.3	383.924	36	-90/0	3	5	2	0.64
CMHL163	515614.8	6708735.3	383.924	36	-90/0	13	20	7	0.61
CMHL163	515614.8	6708735.3	383.924	36	-90/0	24	25	1	0.5
CMHL164	515603.6	6708734.4	383.985	36	-90/0	3	5	2	0.71
CMHL164	515603.6	6708734.4	383.985	36	-90/0	9	12	3	1.02
CMHL164	515603.6	6708734.4	383.985	36	-90/0	15	22	7	0.44
CMHL165	515590.7	6708732.5	383.989	36	-90/0	2	3	1	0.68
CMHL165	515590.7	6708732.5	383.989	36	-90/0	9	25	16	0.62
CMHL166	515578.3	6708731.9	384.304	36	-90/0	6	11	5	0.58
CMHL166	515578.3	6708731.9	384.304	36	-90/0	14	20	6	0.78
CMHL167	515562.7	6708731	384.575	36	-90/0	2	21	19	0.85
CMHL167	515562.7	6708731	384.575	36	-90/0	25	28	3	0.6
CMHL168	515550.4	6708730.9	384.758	36	-90/0	7	12	5	0.61
CMHL168	515550.4	6708730.9	384.758	36	-90/0	24	28	4	1.75
CMHL169	515541	6708730.8	384.765	36	-90/0	4	7	3	0.78
CMHL169	515541	6708730.8	384.765	36	-90/0	24	25	1	0.77
CMHL170	515526	6708730.5	384.697	36	-90/0	3	4	1	0.7
CMHL172	515505.5	6708731	384.616	36	-90/0	3	4	1	0.52
CMHL172	515505.5	6708731	384.616	36	-90/0	20	21	1	0.81
CMHL172	515505.5	6708731	384.616	36	-90/0	24	30	6	1.04
CMHL173	515489.1	6708740.5	384.556	36	-90/0	3	11	8	0.56
CMHL174	515490.1	6708750.6	384.845	36	-90/0	30	31	1	0.79
CMHL175	515491.7	6708766.3	385.346	36	-90/0	2	3	1	0.54
CMHL175	515491.7	6708766.3	385.346	36	-90/0	9	10	1	4.77
CMHL175	515491.7	6708766.3	385.346	36	-90/0	13	14	1	1.21
CMHL175	515491.7	6708766.3	385.346	36	-90/0	25	31	6	0.53
CMHL176	515493.9	6708781.7	385.353	36	-90/0	4	5	1	0.5
CMHL176	515493.9	6708781.7	385.353	36	-90/0	18	19	1	0.69
CMHL176	515493.9	6708781.7	385.353	36	-90/0	29	32	3	0.6
CMHL177	515494.4	6708791.2	385.238	36	-90/0	22	23	1	0.53
CMHL177	515494.4	6708791.2	385.238	36	-90/0	30	32	2	0.71
CMHL178	515498.6	6708806.6	385.312	36	-90/0	7	8	1	0.72
CMHL178	515498.6	6708806.6	385.312	36	-90/0	27	28	1	0.65
CMHL178	515498.6	6708806.6	385.312	36	-90/0	31	33	2	1.21
CMHL179	515498.9	6708817.5	385.052	36	-90/0	16	17	1	1.34
CMHL180	515502.1	6708828.9	384.987	36	-90/0	14	15	1	2.42
CMHL180	515502.1	6708828.9	384.987	36	-90/0	29	30	1	0.7
CMHL180	515502.1	6708828.9	384.987	36	-90/0	35	36	1	0.6
CMHL181	515513.3	6708830.3	385.805	36	-90/0	3	7	4	0.56
CMHL181	515513.3	6708830.3	385.805	36	-90/0	16	17	1	4.59
CMHL182	515655.6	6708745.8	385.032	36	-90/0	2	7	5	0.76
CMHL182	515655.6	6708745.8	385.032	36	-90/0	11	17	6	0.64

CMHL182	515655.6	6708745.8	385.032	36	-90/0	22	25	3	0.45
CMHL182	515655.6	6708745.8	385.032	36	-90/0	28	30	2	0.6
CMHL183	515694.7	6708745.1	383.326	36	-90/0	2	3	1	1.43
CMHL183	515694.7	6708745.1	383.326	36	-90/0	9	10	1	0.55
CMHL183	515694.7	6708745.1	383.326	36	-90/0	15	17	2	0.75
CMHL184	515746.4	6708748.8	380.249	36	-90/0	19	21	2	0.65
CMHL184	515746.4	6708748.8	380.249	36	-90/0	24	25	1	0.73
CMHL184	515746.4	6708748.8	380.249	36	-90/0	30	34	4	0.68
CMHL186	515745.4	6708790.3	380.539	33	-90/0	15	16	1	1.02
CMHL186	515745.4	6708790.3	380.539	33	-90/0	21	25	4	0.91
CMHL187	515746.4	6708814.9	380.265	33	-90/0	20	25	5	0.71
CMHL188	515744	6708839.1	380.246	33	-90/0	17	21	4	1.06
CMHL189	515728.4	6708850.6	381.921	36	-90/0	20	28	8	0.67
CMHL190	515729.4	6708835.9	381.783	33	-90/0	16	17	1	0.5
CMHL190	515729.4	6708835.9	381.783	33	-90/0	20	22	2	0.75
CMHL191	515730.5	6708822.2	382.033	35	-90/0	18	22	4	1.12
CMHL191	515730.5	6708822.2	382.033	35	-90/0	26	28	2	0.58
CMHL191	515730.5	6708822.2	382.033	35	-90/0	31	33	2	0.56
CMHL192	515731.6	6708808.1	382.007	36	-90/0	16	21	5	0.62
CMHL193	515731.9	6708798.3	381.528	35	-90/0	28	29	1	0.59
CMHL194	515730.4	6708787.8	381.492	36	-90/0	21	23	2	0.73
CMHL194	515730.4	6708787.8	381.492	36	-90/0	28	32	4	0.35
CMHL195	515726.8	6708774.2	381.885	33	-90/0	8	12	4	2.07
CMHL195	515726.8	6708774.2	381.885	33	-90/0	25	26	1	0.61
CMHL253	515641.9	6708810.6	384.975	32	-90/0	25	29	4	0.41
CMHL254	515613.3	6708810.2	385.593	36	-90/0	3	7	4	0.57
CMHL254	515613.3	6708810.2	385.593	36	-90/0	12	13	1	0.54
CMHL254	515613.3	6708810.2	385.593	36	-90/0	22	24	2	0.59
CMHL255	515603.5	6708809.5	385.731	36	-90/0	0	5	5	1.17
CMHL255	515603.5	6708809.5	385.731	36	-90/0	15	16	1	0.9
CMHL256	515591.7	6708808.8	385.784	36	-90/0	0	3	3	0.62
CMHL256	515591.7	6708808.8	385.784	36	-90/0	16	22	6	1.09
CMHL257	515579.9	6708808.7	385.943	36	-90/0	1	3	2	0.81
CMHL257	515579.9	6708808.7	385.943	36	-90/0	6	7	1	0.55
CMHL257	515579.9	6708808.7	385.943	36	-90/0	12	16	4	0.57
CMHL257	515579.9	6708808.7	385.943	36	-90/0	19	20	1	0.67
CMHL258	515565.3	6708808.2	385.742	36	-90/0	12	19	7	0.67
CMHL258	515565.3	6708808.2	385.742	36	-90/0	35	36	1	0.6
CMHL259	515553	6708807.5	385.725	36	-90/0	1	2	1	0.54
CMHL259	515553	6708807.5	385.725	36	-90/0	6	8	2	0.9
CMHL261	515528.6	6708806.7	385.925	38	-90/0	1	2	1	0.55
CMRC0602	516398.2	6710111.8	337.186	90	-60/301	49	52	3	2.23
CMRC0602	516398.2	6710111.8	337.186	90	-60/301	65	66	1	8.72
CMRC0602	516398.2	6710111.8	337.186	90	-60/301	84	85	1	1.27
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	11	13	2	1.42

CMRC0603	516883.9	6710483.7	341.627	252	-61/285	18	22	4	0.59
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	47	48	1	0.57
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	91	92	1	1.13
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	146	147	1	3.83
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	165	180	15	7.11
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	183	210	27	1.76
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	216	217	1	0.55
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	228	229	1	4.14
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	237	238	1	0.51
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	241	242	1	0.8
CMRC0603	516883.9	6710483.7	341.627	252	-61/285	248	249	1	0.51
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	1	2	1	0.96
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	18	21	3	0.96
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	44	45	1	0.78
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	101	102	1	1.06
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	116	117	1	0.73
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	120	121	1	0.84
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	126	127	1	1.01
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	148	151	3	0.9
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	162	164	2	2.51
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	167	177	10	1.21
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	180	186	6	1.53
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	189	210	21	1.13
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	221	222	1	0.97
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	251	252	1	5.37
CMRC0604	516891.2	6710522.1	340.41	270	-60/285	255	264	9	0.58
CMRC0605	516908.2	6710645	345.684	294	-60/286	6	7	1	1.78
CMRC0605	516908.2	6710645	345.684	294	-60/286	45	46	1	1.08
CMRC0605	516908.2	6710645	345.684	294	-60/286	61	62	1	0.65
CMRC0605	516908.2	6710645	345.684	294	-60/286	119	124	5	0.8
CMRC0605	516908.2	6710645	345.684	294	-60/286	132	134	2	10.25
CMRC0605	516908.2	6710645	345.684	294	-60/286	137	141	4	0.45
CMRC0605	516908.2	6710645	345.684	294	-60/286	174	175	1	1.42
CMRC0605	516908.2	6710645	345.684	294	-60/286	179	193	14	1.68
CMRC0605	516908.2	6710645	345.684	294	-60/286	200	201	1	0.72
CMRC0605	516908.2	6710645	345.684	294	-60/286	207	209	2	3.86
CMRC0605	516908.2	6710645	345.684	294	-60/286	213	216	3	7.2
CMRC0605	516908.2	6710645	345.684	294	-60/286	221	225	4	1.56
CMRC0605	516908.2	6710645	345.684	294	-60/286	243	249	6	0.8
CMRC0605	516908.2	6710645	345.684	294	-60/286	252	254	2	0.89
CMRC0605	516908.2	6710645	345.684	294	-60/286	263	267	4	1.73
CMRC0605	516908.2	6710645	345.684	294	-60/286	277	278	1	0.52
CMRC0606	516904.5	6710558.3	341.208	216	-61/287	7	8	1	0.54
CMRC0606	516904.5	6710558.3	341.208	216	-61/287	23	28	5	0.66
CMRC0606	516904.5	6710558.3	341.208	216	-61/287	70	74	4	0.75

CMRC0606	516904.5	6710558.3	341.208	216	-61/287	78	80	2	6.04
CMRC0606	516904.5	6710558.3	341.208	216	-61/287	84	89	5	2.07
CMRC0606	516904.5	6710558.3	341.208	216	-61/287	150	152	2	0.77
CMRC0606	516904.5	6710558.3	341.208	216	-61/287	162	163	1	0.83
CMRC0606	516904.5	6710558.3	341.208	216	-61/287	169	176	7	0.8
CMRC0606	516904.5	6710558.3	341.208	216	-61/287	183	186	3	0.58
CMRC0606	516904.5	6710558.3	341.208	216	-61/287	194	196	2	10.69
CMRC0608	516804	6710296.2	330.47	204	-60/288	77	81	4	2.8
CMRC0608	516804	6710296.2	330.47	204	-60/288	87	90	3	0.79
CMRC0608	516804	6710296.2	330.47	204	-60/288	98	100	2	1.36
CMRC0608	516804	6710296.2	330.47	204	-60/288	108	109	1	0.78
CMRC0608	516804	6710296.2	330.47	204	-60/288	126	134	8	0.55
CMRC0608	516804	6710296.2	330.47	204	-60/288	159	162	3	1.32
CMRC0608	516804	6710296.2	330.47	204	-60/288	170	176	6	1.31
CMRC0608	516804	6710296.2	330.47	204	-60/288	188	189	1	5.01
CMRC0609	516825	6710291.1	329.912	246	-61/286	7	8	1	0.78
CMRC0609	516825	6710291.1	329.912	246	-61/286	101	102	1	0.57
CMRC0609	516825	6710291.1	329.912	246	-61/286	120	121	1	2.19
CMRC0609	516825	6710291.1	329.912	246	-61/286	130	132	2	1.15
CMRC0609	516825	6710291.1	329.912	246	-61/286	141	142	1	0.7
CMRC0609	516825	6710291.1	329.912	246	-61/286	180	181	1	0.52
CMRC0609	516825	6710291.1	329.912	246	-61/286	185	190	5	1
CMRC0609	516825	6710291.1	329.912	246	-61/286	196	199	3	1.03
CMRC0609	516825	6710291.1	329.912	246	-61/286	210	214	4	1.68
CMRC0609	516825	6710291.1	329.912	246	-61/286	218	219	1	2.47
CMRC0609	516825	6710291.1	329.912	246	-61/286	228	229	1	0.79
CMRC0609	516825	6710291.1	329.912	246	-61/286	235	236	1	1.65
CMRC0609	516825	6710291.1	329.912	246	-61/286	240	244	4	1.19
CMRC0610	516794.7	6710260.6	330.548	180	-61/287	94	95	1	4.15
CMRC0610	516794.7	6710260.6	330.548	180	-61/287	101	102	1	0.5
CMRC0610	516794.7	6710260.6	330.548	180	-61/287	109	110	1	33.7
CMRC0610	516794.7	6710260.6	330.548	180	-61/287	129	131	2	3.2
CMRC0610	516794.7	6710260.6	330.548	180	-61/287	139	140	1	0.69
CMRC0610	516794.7	6710260.6	330.548	180	-61/287	144	151	7	0.69
CMRC0610	516794.7	6710260.6	330.548	180	-61/287	158	159	1	0.71
CMRC0610	516794.7	6710260.6	330.548	180	-61/287	162	168	6	1.07
CMRC0611	516814.7	6710252.1	330.061	246	-60/286	89	90	1	0.99
CMRC0611	516814.7	6710252.1	330.061	246	-60/286	107	108	1	0.51
CMRC0611	516814.7	6710252.1	330.061	246	-60/286	114	115	1	1.32
CMRC0611	516814.7	6710252.1	330.061	246	-60/286	124	127	3	0.86
CMRC0611	516814.7	6710252.1	330.061	246	-60/286	132	133	1	5.53
CMRC0611	516814.7	6710252.1	330.061	246	-60/286	163	168	5	0.9
CMRC0611	516814.7	6710252.1	330.061	246	-60/286	176	178	2	2.47
CMRC0611	516814.7	6710252.1	330.061	246	-60/286	189	190	1	0.86
CMRC0611	516814.7	6710252.1	330.061	246	-60/286	194	204	10	1.92

CMRC0611	516814.7	6710252.1	330.061	246	-60/286	209	210	1	2.01
CMRC0613	516763	6710226.3	330.377	180	-49/300	43	51	8	4.95
CMRC0613	516763	6710226.3	330.377	180	-49/300	57	61	4	0.53
CMRC0613	516763	6710226.3	330.377	180	-49/300	82	87	5	1.08
CMRC0613	516763	6710226.3	330.377	180	-49/300	104	106	2	1.59
CMRC0613	516763	6710226.3	330.377	180	-49/300	111	129	18	0.96
CMRC0613	516763	6710226.3	330.377	180	-49/300	132	138	6	0.42
CMRC0613	516763	6710226.3	330.377	180	-49/300	164	168	4	0.71
CMRC0614	516763.4	6710216.1	330.256	198	-60/286	4	6	2	0.78
CMRC0614	516763.4	6710216.1	330.256	198	-60/286	47	48	1	0.82
CMRC0614	516763.4	6710216.1	330.256	198	-60/286	74	82	8	3.77
CMRC0614	516763.4	6710216.1	330.256	198	-60/286	89	90	1	0.59
CMRC0614	516763.4	6710216.1	330.256	198	-60/286	96	100	4	2.54
CMRC0616	516801.2	6710215.5	330.282	246	-61/285	225	226	1	0.68
CMRC0616	516801.2	6710215.5	330.282	246	-61/285	229	230	1	0.86
CMRC0617	516688.2	6710092	329.913	144	-60/302	0	1	1	0.55
CMRC0617	516688.2	6710092	329.913	144	-60/302	35	36	1	3.22
CMRC0617	516688.2	6710092	329.913	144	-60/302	42	43	1	0.69
CMRC0617	516688.2	6710092	329.913	144	-60/302	51	55	4	1.46
CMRC0617	516688.2	6710092	329.913	144	-60/302	68	69	1	0.75
CMRC0617	516688.2	6710092	329.913	144	-60/302	88	89	1	2.39
CMRC0617	516688.2	6710092	329.913	144	-60/302	97	100	3	0.56
CMRC0617	516688.2	6710092	329.913	144	-60/302	109	110	1	2.55
CMRC0617	516688.2	6710092	329.913	144	-60/302	116	120	4	0.67
CMRC0618	516715.9	6710097.5	332.641	198	-48/300	1	7	6	0.84
CMRC0618	516715.9	6710097.5	332.641	198	-48/300	51	52	1	0.52
CMRC0618	516715.9	6710097.5	332.641	198	-48/300	71	72	1	1.76
CMRC0618	516715.9	6710097.5	332.641	198	-48/300	79	80	1	1.89
CMRC0618	516715.9	6710097.5	332.641	198	-48/300	101	102	1	0.71
CMRC0618	516715.9	6710097.5	332.641	198	-48/300	108	109	1	2.84

Karlawinda									
Hole No	Easting	Northing	RL	Hole Depth	Dip/Azi	From	To	Width	$\text { Grade }(\mathrm{g} / \mathrm{t}$ $\mathrm{Au})$
KBRC1700	203710.33	7367518.57	587.76	258	-60.38/99	157	158	1	0.78
KBRC1700	203710.33	7367518.57	587.76	258	-60.38/99	210	211	1	11.35
KBRC1700	203710.33	7367518.57	587.76	258	-60.38/99	217	218	1	1.24
KBRC1700	203710.33	7367518.57	587.76	258	-60.38/99	241	247	6	0.75
KBRC1701	203716.77	7367385.72	587.46	210	-60.03/103	101	106	5	0.65
KBRC1701	203716.77	7367385.72	587.46	210	-60.03/103	115	123	8	1.33
KBRC1703	203886.82	7367422.09	587.66	162	-60.63/102	102	105	3	0.78
KBRC1703	203886.82	7367422.09	587.66	162	-60.63/102	112	113	1	1.46
KBRC1703	203886.82	7367422.09	587.66	162	-60.63/102	128	129	1	0.68
KBRC1705	203809.49	7367494.67	587.77	210	-59.38/100	111	112	1	1.76
KBRC1705	203809.49	7367494.67	587.77	210	-59.38/100	164	178	14	1.20
KBRC1705	203809.49	7367494.67	587.77	210	-59.38/100	189	190	1	0.72
KBRC1705	203809.49	7367494.67	587.77	210	-59.38/100	195	207	12	0.44
KBRC1707	203726	7367566.25	587.85	246	-60.9/98	91	92	1	3.89
KBRC1707	203726	7367566.25	587.85	246	-60.9/98	105	106	1	1.24
KBRC1707	203726	7367566.25	587.85	246	-60.9/98	166	171	5	2.03
KBRC1707	203726	7367566.25	587.85	246	-60.9/98	193	194	1	0.65
KBRC1707	203726	7367566.25	587.85	246	-60.9/98	199	202	3	1.07
KBRC1708	203625.5	7367829.29	588.04	216	-60.42/97	77	78	1	0.58
KBRC1708	203625.5	7367829.29	588.04	216	-60.42/97	140	158	18	1.40
KBRC1708	203625.5	7367829.29	588.04	216	-60.42/97	164	165	1	0.86
KBRC1708	203625.5	7367829.29	588.04	216	-60.42/97	187	188	1	0.75
KBRC1708	203625.5	7367829.29	588.04	216	-60.42/97	200	201	1	0.74
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	63	67	4	0.90
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	72	82	10	0.45
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	97	98	1	0.69
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	147	160	13	0.60
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	166	167	1	0.61
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	172	173	1	1.55
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	177	178	1	0.80
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	189	190	1	1.31
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	195	196	1	1.44
KBRC1709	203618.37	7367803.13	588.11	216	-60.37/101	212	214	2	0.70
KBRC1710	203635.81	7368238.96	588.43	174	-59.4/102	46	51	5	0.47
KBRC1710	203635.81	7368238.96	588.43	174	-59.4/102	68	69	1	0.69
KBRC1710	203635.81	7368238.96	588.43	174	-59.4/102	79	80	1	0.60
KBRC1710	203635.81	7368238.96	588.43	174	-59.4/102	89	94	5	0.52
KBRC1710	203635.81	7368238.96	588.43	174	-59.4/102	98	99	1	0.54
KBRC1710	203635.81	7368238.96	588.43	174	-59.4/102	115	116	1	0.50
KBRC1710	203635.81	7368238.96	588.43	174	-59.4/102	139	140	1	0.76
KBRC1710	203635.81	7368238.96	588.43	174	-59.4/102	163	166	3	0.97
KBRC1711	203587.46	7368252.11	588.56	192	-60.49/105	48	50	2	0.82

KBRC1711	203587.46	7368252.11	588.56	192	-60.49/105	89	90	1	0.67
KBRC1711	203587.46	7368252.11	588.56	192	-60.49/105	98	102	4	0.78
KBRC1711	203587.46	7368252.11	588.56	192	-60.49/105	108	109	1	0.76
KBRC1711	203587.46	7368252.11	588.56	192	-60.49/105	115	116	1	0.67
KBRC1711	203587.46	7368252.11	588.56	192	-60.49/105	164	165	1	0.51
KBRC1711	203587.46	7368252.11	588.56	192	-60.49/105	176	182	6	1.32
KBRC1711	203587.46	7368252.11	588.56	192	-60.49/105	190	191	1	1.00
KBRC1712	203738.6	7368237.58	588.58	144	-59.73/104	39	40	1	1.23
KBRC1712	203738.6	7368237.58	588.58	144	-59.73/104	45	48	3	1.05
KBRC1712	203738.6	7368237.58	588.58	144	-59.73/104	65	66	1	0.77
KBRC1712	203738.6	7368237.58	588.58	144	-59.73/104	140	141	1	0.65
KBRC1713	203642.58	7368263.93	588.62	192	-60.37/104	50	52	2	4.89
KBRC1713	203642.58	7368263.93	588.62	192	-60.37/104	59	61	2	0.64
KBRC1713	203642.58	7368263.93	588.62	192	-60.37/104	67	68	1	0.60
KBRC1713	203642.58	7368263.93	588.62	192	-60.37/104	72	77	5	0.40
KBRC1713	203642.58	7368263.93	588.62	192	-60.37/104	81	88	7	0.73
KBRC1713	203642.58	7368263.93	588.62	192	-60.37/104	100	101	1	0.57
KBRC1713	203642.58	7368263.93	588.62	192	-60.37/104	106	107	1	0.86
KBRC1713	203642.58	7368263.93	588.62	192	-60.37/104	155	167	12	0.50
KBRC1714	203697.03	7368273.21	588.6	180	-60.15/107	44	45	1	1.90
KBRC1714	203697.03	7368273.21	588.6	180	-60.15/107	57	58	1	0.56
KBRC1714	203697.03	7368273.21	588.6	180	-60.15/107	63	68	5	0.62
KBRC1714	203697.03	7368273.21	588.6	180	-60.15/107	74	82	8	1.35
KBRC1714	203697.03	7368273.21	588.6	180	-60.15/107	119	120	1	0.53
KBRC1714	203697.03	7368273.21	588.6	180	-60.15/107	176	177	1	2.16
KBRC1715	203648.98	7368286.48	588.51	192	-60.07/102	52	53	1	1.00
KBRC1715	203648.98	7368286.48	588.51	192	-60.07/102	66	67	1	1.22
KBRC1715	203648.98	7368286.48	588.51	192	-60.07/102	71	74	3	0.95
KBRC1715	203648.98	7368286.48	588.51	192	-60.07/102	95	100	5	1.04
KBRC1715	203648.98	7368286.48	588.51	192	-60.07/102	143	145	2	0.68
KBRC1715	203648.98	7368286.48	588.51	192	-60.07/102	157	162	5	0.58
KBRC1715	203648.98	7368286.48	588.51	192	-60.07/102	175	176	1	0.69
KBRC1716	203629.81	7368318.59	588.69	186	-59.94/105	95	98	3	0.52
KBRC1716	203629.81	7368318.59	588.69	186	-59.94/105	139	140	1	0.50
KBRC1716	203629.81	7368318.59	588.69	186	-59.94/105	158	161	3	0.57
KBRC1716	203629.81	7368318.59	588.69	186	-59.94/105	166	172	6	1.07
KBRC1784	203601.68	7367727.35	587.89	192	-60.59/105	67	68	1	1.86
KBRC1784	203601.68	7367727.35	587.89	192	-60.59/105	120	121	1	0.58
KBRC1784	203601.68	7367727.35	587.89	192	-60.59/105	146	155	9	0.52
KBRC1784	203601.68	7367727.35	587.89	192	-60.59/105	167	169	2	0.92
KBRC1784	203601.68	7367727.35	587.89	192	-60.59/105	173	174	1	0.59
KBRC1785	203659.1	7367764.62	588.04	306	-60.11/108	85	86	1	0.65
KBRC1785	203659.1	7367764.62	588.04	306	-60.11/108	134	143	9	0.85
KBRC1785	203659.1	7367764.62	588.04	306	-60.11/108	170	171	1	0.64

KBRC1785	203659.1	7367764.62	588.04	306	-60.11/108	200	206	6	0.68
KBRC1789	203664.49	7368333.79	588.77	180	-59.93/106	60	61	1	0.53
KBRC1789	203664.49	7368333.79	588.77	180	-59.93/106	86	91	5	0.64
KBRC1789	203664.49	7368333.79	588.77	180	-59.93/106	103	110	7	1.50
KBRC1789	203664.49	7368333.79	588.77	180	-59.93/106	121	122	1	3.62
KBRC1789	203664.49	7368333.79	588.77	180	-59.93/106	134	136	2	0.83
KBRC1789	203664.49	7368333.79	588.77	180	-59.93/106	152	153	1	0.94
KBRC1789	203664.49	7368333.79	588.77	180	-59.93/106	157	162	5	0.46
KBRC1790	203615.85	7368350.4	588.7	198	-61.13/102	67	74	7	1.64
KBRC1790	203615.85	7368350.4	588.7	198	-61.13/102	89	90	1	1.19
KBRC1790	203615.85	7368350.4	588.7	198	-61.13/102	110	117	7	0.38
KBRC1790	203615.85	7368350.4	588.7	198	-61.13/102	122	123	1	0.55
KBRC1790	203615.85	7368350.4	588.7	198	-61.13/102	164	165	1	0.57
KBRC1790	203615.85	7368350.4	588.7	198	-61.13/102	171	182	11	0.62
KBRC1791	203670.32	7368360.01	588.76	180	-59.63/108	54	56	2	1.84
KBRC1791	203670.32	7368360.01	588.76	180	-59.63/108	74	78	4	0.58
KBRC1791	203670.32	7368360.01	588.76	180	-59.63/108	103	104	1	0.67
KBRC1791	203670.32	7368360.01	588.76	180	-59.63/108	113	117	4	0.87
KBRC1791	203670.32	7368360.01	588.76	180	-59.63/108	153	155	2	1.05
KBRC1791	203670.32	7368360.01	588.76	180	-59.63/108	162	163	1	0.85
KBRC1791	203670.32	7368360.01	588.76	180	-59.63/108	168	169	1	0.71
KBRC1792	203778.75	7368381.28	589.12	150	-61.36/108	31	32	1	1.38
KBRC1792	203778.75	7368381.28	589.12	150	-61.36/108	39	40	1	0.91
KBRC1792	203778.75	7368381.28	589.12	150	-61.36/108	64	65	1	1.83
KBRC1792	203778.75	7368381.28	589.12	150	-61.36/108	76	81	5	0.58
KBRC1792	203778.75	7368381.28	589.12	150	-61.36/108	127	129	2	0.72
KBRC1792	203778.75	7368381.28	589.12	150	-61.36/108	138	139	1	0.62
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	17	18	1	0.50
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	51	53	2	1.01
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	64	69	5	1.08
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	76	77	1	1.07
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	98	100	2	0.62
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	112	120	8	0.66
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	126	127	1	0.67
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	144	146	2	15.71
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	152	156	4	0.71
KBRC1793	203696.83	7368380.29	588.73	186	-65.05/75	162	163	1	0.51
KBRC1794	203471.95	7368643.28	590.27	246	-54.95/105	14	15	1	0.54
KBRC1794	203471.95	7368643.28	590.27	246	-54.95/105	147	148	1	1.30
KBRC1794	203471.95	7368643.28	590.27	246	-54.95/105	156	157	1	3.88
KBRC1794	203471.95	7368643.28	590.27	246	-54.95/105	177	189	12	1.92
KBRC1794	203471.95	7368643.28	590.27	246	-54.95/105	206	210	4	1.14
KBRC1794	203471.95	7368643.28	590.27	246	-54.95/105	216	217	1	2.00
KBRC1795	203472.34	7368672.77	590.21	252	-54.72/101	163	166	3	2.12

KBRC1795	203472.34	7368672.77	590.21	252	-54.72/101	204	210	6	1.02
KBRC1795	203472.34	7368672.77	590.21	252	-54.72/101	214	215	1	0.55
KBRC1796	203475.39	7368723.67	590.03	258	-56.63/108	112	115	3	0.85
KBRC1796	203475.39	7368723.67	590.03	258	-56.63/108	184	185	1	4.60
KBRC1796	203475.39	7368723.67	590.03	258	-56.63/108	199	202	3	7.38
KBRC1796	203475.39	7368723.67	590.03	258	-56.63/108	217	223	6	3.65
KBRC1796	203475.39	7368723.67	590.03	258	-56.63/108	229	230	1	1.24
KBRC1798	203328.7	7368178.6	587.76	234	-61.23/101	49	56	7	0.47
KBRC1798	203328.7	7368178.6	587.76	234	-61.23/101	112	113	1	0.84
KBRC1798	203328.7	7368178.6	587.76	234	-61.23/101	140	141	1	0.62
KBRC1798	203328.7	7368178.6	587.76	234	-61.23/101	167	170	3	0.55
KBRC1798	203328.7	7368178.6	587.76	234	-61.23/101	212	216	4	2.15
KBRC1798	203328.7	7368178.6	587.76	234	-61.23/101	229	230	1	0.94
KBRC1799	203764.13	7368127.42	588.6	162	-60.8/101	45	46	1	0.79
KBRC1799	203764.13	7368127.42	588.6	162	-60.8/101	64	68	4	0.52
KBRC1799	203764.13	7368127.42	588.6	162	-60.8/101	103	104	1	0.89
KBRC1799	203764.13	7368127.42	588.6	162	-60.8/101	110	119	9	0.46
KBRC1799	203764.13	7368127.42	588.6	162	-60.8/101	125	126	1	0.50
KBRC1799	203764.13	7368127.42	588.6	162	-60.8/101	142	143	1	0.73
KBRC1799	203764.13	7368127.42	588.6	162	-60.8/101	147	157	10	0.87
KBRC1804	203970.27	7368117.48	588.98	144	-55.76/106	56	60	4	0.58
KBRC1804	203970.27	7368117.48	588.98	144	-55.76/106	66	67	1	0.71
KBRC1804	203970.27	7368117.48	588.98	144	-55.76/106	109	110	1	0.59
KBRC1805	203434.95	7368731.44	589.18	276	-62.41/103	10	11	1	0.56
KBRC1805	203434.95	7368731.44	589.18	276	-62.41/103	121	122	1	1.14
KBRC1805	203434.95	7368731.44	589.18	276	-62.41/103	173	174	1	3.16
KBRC1805	203434.95	7368731.44	589.18	276	-62.41/103	204	211	7	0.52
KBRC1805	203434.95	7368731.44	589.18	276	-62.41/103	222	237	15	1.36
KBRC1805	203434.95	7368731.44	589.18	276	-62.41/103	267	270	3	1.10
KBRC1806	203369.95	7368751.17	589.19	294	-60.49/104	142	143	1	1.44
KBRC1806	203369.95	7368751.17	589.19	294	-60.49/104	158	159	1	1.08
KBRC1806	203369.95	7368751.17	589.19	294	-60.49/104	213	215	2	0.91
KBRC1806	203369.95	7368751.17	589.19	294	-60.49/104	225	244	19	1.07
KBRC1806	203369.95	7368751.17	589.19	294	-60.49/104	251	269	18	1.41
KBRC1807	203397.06	7368768.31	589.19	332	-60.3/103	54	55	1	0.54
KBRC1807	203397.06	7368768.31	589.19	332	-60.3/103	151	152	1	0.63
KBRC1807	203397.06	7368768.31	589.19	332	-60.3/103	224	225	1	1.81
KBRC1807	203397.06	7368768.31	589.19	332	-60.3/103	234	254	20	1.21
KBRC1807	203397.06	7368768.31	589.19	332	-60.3/103	309	310	1	0.62
KBRC1807	203397.06	7368768.31	589.19	332	-60.3/103	319	320	1	0.68
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	35	36	1	5.74
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	130	131	1	0.53
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	143	144	1	1.13
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	153	156	3	0.67

KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	221	225	4	0.47
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	232	251	19	2.05
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	299	300	1	52.40
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	308	309	1	1.13
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	316	317	1	2.31
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	327	329	2	0.96
KBRC1808	203412.22	7368791.49	589.27	354	-60.42/105	344	345	1	0.65
KBRC1809	203468.92	7368748.91	590.15	264	-60.16/105	10	12	2	0.80
KBRC1809	203468.92	7368748.91	590.15	264	-60.16/105	120	127	7	0.57
KBRC1809	203468.92	7368748.91	590.15	264	-60.16/105	200	208	8	0.48
KBRC1809	203468.92	7368748.91	590.15	264	-60.16/105	215	232	17	2.31
KBRC1809	203468.92	7368748.91	590.15	264	-60.16/105	256	257	1	0.89
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	11	13	2	0.85
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	19	20	1	0.75
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	26	37	11	0.54
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	132	133	1	0.99
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	227	229	2	0.78
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	234	242	8	0.77
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	246	252	6	1.45
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	314	315	1	0.69
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	327	333	6	0.83
KBRC1810	203406.55	7368818.17	589.31	348	-60.57/105	338	339	1	0.51
KBRC1811	203697.25	7368091.28	588.28	204	-59.81/106	45	46	1	0.62
KBRC1811	203697.25	7368091.28	588.28	204	-59.81/106	72	73	1	0.75
KBRC1811	203697.25	7368091.28	588.28	204	-59.81/106	80	83	3	0.59
KBRC1811	203697.25	7368091.28	588.28	204	-59.81/106	107	108	1	0.83
KBRC1811	203697.25	7368091.28	588.28	204	-59.81/106	125	132	7	0.70
KBRC1811	203697.25	7368091.28	588.28	204	-59.81/106	150	151	1	0.55
KBRC1811	203697.25	7368091.28	588.28	204	-59.81/106	159	160	1	0.71
KBRC1811	203697.25	7368091.28	588.28	204	-59.81/106	167	179	12	0.54
KBRC1811	203697.25	7368091.28	588.28	204	-59.81/106	190	192	2	1.40
KBRC1812	203471.02	7368773.34	589.89	306	-63.79/104	113	114	1	1.31
KBRC1812	203471.02	7368773.34	589.89	306	-63.79/104	119	122	3	0.36
KBRC1812	203471.02	7368773.34	589.89	306	-63.79/104	132	135	3	0.97
KBRC1812	203471.02	7368773.34	589.89	306	-63.79/104	148	150	2	0.56
KBRC1812	203471.02	7368773.34	589.89	306	-63.79/104	199	200	1	2.29
KBRC1812	203471.02	7368773.34	589.89	306	-63.79/104	206	231	25	1.21
KBRC1812	203471.02	7368773.34	589.89	306	-63.79/104	301	306	5	1.22
KBRC1813	203481.75	7368825.3	590.36	282	-53.85/102	31	32	1	0.70
KBRC1813	203481.75	7368825.3	590.36	282	-53.85/102	100	102	2	0.95
KBRC1813	203481.75	7368825.3	590.36	282	-53.85/102	209	213	4	0.63
KBRC1813	203481.75	7368825.3	590.36	282	-53.85/102	220	234	14	1.13
KBRC1813	203481.75	7368825.3	590.36	282	-53.85/102	249	254	5	0.79
KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	46	47	1	0.50

KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	70	74	4	7.27
KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	122	123	1	0.71
KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	154	156	2	0.90
KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	163	164	1	0.71
KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	231	240	9	1.11
KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	283	284	1	0.89
KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	291	300	9	1.69
KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	307	315	8	0.96
KBRC1814	203488.55	7368872.48	590.36	342	-56.93/101	338	339	1	0.75
KBRC1815	203443.19	7368878.55	589.54	348	-60.63/100	8	9	1	0.67
KBRC1815	203443.19	7368878.55	589.54	348	-60.63/100	40	46	6	0.74
KBRC1815	203443.19	7368878.55	589.54	348	-60.63/100	65	66	1	1.11
KBRC1815	203443.19	7368878.55	589.54	348	-60.63/100	246	252	6	1.77
KBRC1815	203443.19	7368878.55	589.54	348	-60.63/100	311	319	8	0.90
KBRC1815	203443.19	7368878.55	589.54	348	-60.63/100	324	328	4	0.70
KBRC1816	203618.9	7368550.44	576.86	180	-89.86/53	48	49	1	0.60
KBRC1816	203618.9	7368550.44	576.86	180	-89.86/53	76	77	1	2.09
KBRC1816	203618.9	7368550.44	576.86	180	-89.86/53	95	96	1	2.58
KBRC1816	203618.9	7368550.44	576.86	180	-89.86/53	100	104	4	1.29
KBRC1816	203618.9	7368550.44	576.86	180	-89.86/53	120	121	1	0.84
KBRC1816	203618.9	7368550.44	576.86	180	-89.86/53	138	142	4	1.01
KBRC1816	203618.9	7368550.44	576.86	180	-89.86/53	147	148	1	0.58
KBRC1816	203618.9	7368550.44	576.86	180	-89.86/53	163	164	1	0.52
KBRC1817	203447.3	7368834.59	589.44	336	-61.1/103	15	20	5	0.86
KBRC1817	203447.3	7368834.59	589.44	336	-61.1/103	109	110	1	1.06
KBRC1817	203447.3	7368834.59	589.44	336	-61.1/103	133	139	6	0.50
KBRC1817	203447.3	7368834.59	589.44	336	-61.1/103	218	219	1	0.57
KBRC1817	203447.3	7368834.59	589.44	336	-61.1/103	230	240	10	1.24
KBRC1817	203447.3	7368834.59	589.44	336	-61.1/103	284	285	1	0.54
KBRC1817	203447.3	7368834.59	589.44	336	-61.1/103	295	296	1	1.82
KBRC1817	203447.3	7368834.59	589.44	336	-61.1/103	313	315	2	0.76
KBRC1818	203638.41	7369138.36	582.35	282	-60.47/102	78	81	3	1.94
KBRC1818	203638.41	7369138.36	582.35	282	-60.47/102	85	87	2	0.82
KBRC1818	203638.41	7369138.36	582.35	282	-60.47/102	94	98	4	2.18
KBRC1818	203638.41	7369138.36	582.35	282	-60.47/102	102	104	2	1.12
KBRC1818	203638.41	7369138.36	582.35	282	-60.47/102	121	122	1	0.66
KBRC1818	203638.41	7369138.36	582.35	282	-60.47/102	144	147	3	0.73
KBRC1818	203638.41	7369138.36	582.35	282	-60.47/102	226	248	22	0.85
KBRC1818	203638.41	7369138.36	582.35	282	-60.47/102	269	270	1	0.75
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	96	117	21	1.64
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	124	125	1	1.09
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	144	149	5	0.49
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	157	158	1	0.69
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	162	163	1	0.86

KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	198	204	6	0.76
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	234	236	2	0.92
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	241	247	6	0.97
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	253	256	3	1.28
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	260	264	4	0.81
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	270	271	1	0.50
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	279	280	1	0.72
KBRC1819	203582.99	7369128.47	582.45	300	-60.64/103	284	285	1	1.67
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	94	113	19	1.62
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	129	133	4	0.28
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	138	139	1	1.24
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	187	188	1	0.77
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	199	201	2	1.78
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	206	207	1	0.64
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	228	229	1	0.87
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	238	253	15	0.71
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	270	271	1	1.45
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	285	286	1	1.08
KBRC1820	203576.55	7369105.53	582.33	294	-60.26/104	293	294	1	0.76
KBRC1821	203622.5	7368575.99	576.51	234	-88.28/345	74	75	1	1.66
KBRC1821	203622.5	7368575.99	576.51	234	-88.28/345	107	116	9	1.76
KBRC1821	203622.5	7368575.99	576.51	234	-88.28/345	124	126	2	1.51
KBRC1821	203622.5	7368575.99	576.51	234	-88.28/345	130	131	1	2.52
KBRC1821	203622.5	7368575.99	576.51	234	-88.28/345	135	140	5	2.96
KBRC1821	203622.5	7368575.99	576.51	234	-88.28/345	213	217	4	0.98
KBRC1822	203656.34	7368465.32	573.85	186	-87.56/252	30	32	2	0.95
KBRC1822	203656.34	7368465.32	573.85	186	-87.56/252	45	46	1	0.71
KBRC1822	203656.34	7368465.32	573.85	186	-87.56/252	71	72	1	0.57
KBRC1822	203656.34	7368465.32	573.85	186	-87.56/252	103	104	1	0.69
KBRC1822	203656.34	7368465.32	573.85	186	-87.56/252	146	147	1	1.20
KBRC1822	203656.34	7368465.32	573.85	186	-87.56/252	163	166	3	0.67
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	8	9	1	0.60
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	30	31	1	0.88
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	35	38	3	0.76
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	75	77	2	0.86
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	101	106	5	0.63
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	124	125	1	2.71
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	143	144	1	0.56
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	152	153	1	0.51
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	169	174	5	1.12
KBRC1823	203668.74	7368513.7	575.91	216	-89.47/321	183	194	11	0.39
KBRC1824	203765.63	7368492.5	573.03	192	-86.74/265	60	61	1	2.75
KBRC1824	203765.63	7368492.5	573.03	192	-86.74/265	86	92	6	0.41
KBRC1824	203765.63	7368492.5	573.03	192	-86.74/265	102	103	1	0.51

KBRC1824	203765.63	7368492.5	573.03	192	-86.74/265	114	115	1	0.65
KBRC1824	203765.63	7368492.5	573.03	192	-86.74/265	124	133	9	0.90
KBRC1824	203765.63	7368492.5	573.03	192	-86.74/265	139	140	1	0.78
KBRC1824	203765.63	7368492.5	573.03	192	-86.74/265	144	149	5	0.39
KBRC1824	203765.63	7368492.5	573.03	192	-86.74/265	158	161	3	1.06
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	72	73	1	0.58
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	79	80	1	0.82
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	84	86	2	1.44
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	95	96	1	0.94
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	108	112	4	2.06
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	163	164	1	9.91
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	168	171	3	1.46
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	194	195	1	1.33
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	215	216	1	7.76
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	226	227	1	0.57
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	233	234	1	0.55
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	238	243	5	1.00
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	250	252	2	0.86
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	272	277	5	4.24
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	297	298	1	0.67
KBRC1825	203586.83	7369077.42	582.31	318	-75.87/104	306	307	1	1.08
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	67	68	1	1.49
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	79	81	2	1.27
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	86	87	1	0.58
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	91	97	6	0.56
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	102	110	8	0.77
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	162	163	1	0.68
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	175	176	1	1.11
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	189	190	1	0.87
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	200	201	1	2.59
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	232	241	9	0.82
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	246	255	9	1.57
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	263	264	1	0.94
KBRC1826	203592.82	7369075.88	582.37	312	-64.55/103	273	295	22	1.88
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	76	79	3	0.77
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	104	105	1	1.03
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	140	145	5	1.24
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	155	156	1	4.36
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	169	170	1	1.54
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	186	190	4	0.48
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	210	211	1	0.55
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	241	270	29	0.94
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	275	276	1	1.23
KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	282	288	6	2.94

KBRC1827	203589.4	7369025.33	582.31	318	-89.58/106	303	304	1	0.68
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	56	62	6	3.39
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	68	73	5	0.52
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	77	78	1	0.51
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	129	134	5	1.97
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	140	141	1	0.73
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	155	156	1	0.50
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	160	161	1	0.60
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	166	174	8	0.85
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	184	185	1	2.93
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	201	202	1	0.79
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	222	242	20	1.30
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	253	254	1	1.10
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	262	263	1	1.25
KBRC1828	203632.65	7369046.46	582.35	300	-77.46/109	279	280	1	1.19
KBRC1829	203632.87	7369041.72	582.35	300	-88.51/70	61	65	4	5.26
KBRC1829	203632.87	7369041.72	582.35	300	-88.51/70	81	82	1	0.56
KBRC1829	203632.87	7369041.72	582.35	300	-88.51/70	185	186	1	1.45
KBRC1829	203632.87	7369041.72	582.35	300	-88.51/70	227	234	7	0.84
KBRC1829	203632.87	7369041.72	582.35	300	-88.51/70	239	251	12	1.43
KBRC1829	203632.87	7369041.72	582.35	300	-88.51/70	255	256	1	0.55
KBRC1829	203632.87	7369041.72	582.35	300	-88.51/70	283	291	8	2.80
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	49	50	1	0.80
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	60	65	5	0.60
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	87	89	2	2.96
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	97	98	1	0.56
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	106	112	6	0.74
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	119	120	1	0.81
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	144	145	1	0.50
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	152	153	1	0.87
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	210	211	1	1.82
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	236	240	4	1.26
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	244	267	23	2.32
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	273	276	3	1.36
KBRC1830	203583.28	7368986.18	579.8	312	-75.29/99	285	291	6	2.98
KBRC1831	203564.46	7368992.73	579.96	318	-79.66/86	60	61	1	0.66
KBRC1831	203564.46	7368992.73	579.96	318	-79.66/86	71	72	1	0.52
KBRC1831	203564.46	7368992.73	579.96	318	-79.66/86	94	96	2	2.42
KBRC1831	203564.46	7368992.73	579.96	318	-79.66/86	102	103	1	2.52
KBRC1831	203564.46	7368992.73	579.96	318	-79.66/86	220	221	1	1.20
KBRC1831	203564.46	7368992.73	579.96	318	-79.66/86	237	238	1	0.59
KBRC1831	203564.46	7368992.73	579.96	318	-79.66/86	245	275	30	0.98
KBRC1831	203564.46	7368992.73	579.96	318	-79.66/86	282	285	3	0.93
KBRC1831	203564.46	7368992.73	579.96	318	-79.66/86	294	295	1	0.52

KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	36	38	2	2.88
KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	43	44	1	2.16
KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	68	69	1	0.63
KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	93	99	6	1.02
KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	172	177	5	1.94
KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	181	184	3	2.54
KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	220	221	1	2.58
KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	227	228	1	9.24
KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	238	239	1	0.53
KBRC1833	203633.73	7368882.33	572.72	300	-88.07/86	246	263	17	1.25
KBRC1834	203594.89	7368867.66	572.86	312	-89.41/99	1	2	1	3.13
KBRC1834	203594.89	7368867.66	572.86	312	-89.41/99	6	13	7	0.73
KBRC1834	203594.89	7368867.66	572.86	312	-89.41/99	43	44	1	0.50
KBRC1834	203594.89	7368867.66	572.86	312	-89.41/99	78	79	1	0.52
KBRC1834	203594.89	7368867.66	572.86	312	-89.41/99	186	200	14	1.38
KBRC1834	203594.89	7368867.66	572.86	312	-89.41/99	246	273	27	0.83
KBRC1835	203697.19	7368437.16	573.81	174	-59.78/108	23	25	2	1.37
KBRC1835	203697.19	7368437.16	573.81	174	-59.78/108	46	52	6	0.55
KBRC1835	203697.19	7368437.16	573.81	174	-59.78/108	56	57	1	0.85
KBRC1835	203697.19	7368437.16	573.81	174	-59.78/108	88	89	1	1.00
KBRC1835	203697.19	7368437.16	573.81	174	-59.78/108	102	113	11	0.73
KBRC1835	203697.19	7368437.16	573.81	174	-59.78/108	138	139	1	0.77
KBRC1836	203714.26	7368460.38	574.27	168	-65.74/117	31	32	1	0.88
KBRC1836	203714.26	7368460.38	574.27	168	-65.74/117	105	108	3	0.83
KBRC1836	203714.26	7368460.38	574.27	168	-65.74/117	116	121	5	0.67
KBRC1836	203714.26	7368460.38	574.27	168	-65.74/117	154	156	2	0.75
KBRC1837	203614.03	7368853.74	572.76	294	-81.94/97	107	108	1	3.72
KBRC1837	203614.03	7368853.74	572.76	294	-81.94/97	154	155	1	0.79
KBRC1837	203614.03	7368853.74	572.76	294	-81.94/97	168	178	10	1.73
KBRC1837	203614.03	7368853.74	572.76	294	-81.94/97	189	190	1	0.53
KBRC1837	203614.03	7368853.74	572.76	294	-81.94/97	232	245	13	0.88
KBRC1837	203614.03	7368853.74	572.76	294	-81.94/97	249	254	5	1.35
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	9	10	1	0.56
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	59	60	1	1.02
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	64	65	1	0.53
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	88	103	15	0.80
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	112	118	6	0.92
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	125	126	1	0.51
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	131	132	1	0.65
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	192	195	3	0.75
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	206	208	2	0.69
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	237	243	6	0.96
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	250	255	5	1.06
KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	260	264	4	0.90

KBRC1838	203615.34	7368948.45	579.77	312	-88.94/188	269	286	17	0.92
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	56	57	1	0.69
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	88	90	2	2.14
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	98	100	2	0.70
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	105	107	2	0.64
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	117	120	3	2.88
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	126	130	4	4.39
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	135	139	4	0.45
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	178	181	3	1.63
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	209	210	1	1.58
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	238	265	27	1.91
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	269	275	6	0.72
KBRC1839	203595.17	7368968.35	579.91	302	-84.3/104	281	287	6	3.57
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	18	20	2	0.92
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	56	57	1	2.23
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	67	68	1	0.68
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	79	80	1	0.87
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	110	120	10	1.01
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	124	125	1	1.31
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	131	135	4	2.97
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	142	143	1	0.56
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	194	195	1	6.74
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	203	204	1	0.51
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	213	217	4	0.50
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	223	228	5	0.86
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	246	247	1	1.05
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	258	259	1	0.69
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	264	269	5	1.08
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	276	280	4	24.75
KBRC1840	203571.95	7368955.08	579.68	324	-89.62/46	284	301	17	0.82
KBRC1841	203620.87	7368368.85	588.53	210	-59.73/104	69	70	1	0.50
KBRC1841	203620.87	7368368.85	588.53	210	-59.73/104	87	88	1	0.60
KBRC1841	203620.87	7368368.85	588.53	210	-59.73/104	95	96	1	0.79
KBRC1841	203620.87	7368368.85	588.53	210	-59.73/104	120	127	7	0.43
KBRC1841	203620.87	7368368.85	588.53	210	-59.73/104	158	159	1	0.51
KBRC1841	203620.87	7368368.85	588.53	210	-59.73/104	177	181	4	0.88
KBRC1841	203620.87	7368368.85	588.53	210	-59.73/104	185	186	1	1.38
KBRC1841	203620.87	7368368.85	588.53	210	-59.73/104	191	192	1	2.64
KBRC1841	203620.87	7368368.85	588.53	210	-59.73/104	205	206	1	3.49
KBRC1842	203302.04	7368115.5	587.62	208	-59.74/102	88	89	1	1.07
KBRC1842	203302.04	7368115.5	587.62	208	-59.74/102	164	165	1	0.50
KBRC1842	203302.04	7368115.5	587.62	208	-59.74/102	179	180	1	0.51
KBRC1842	203302.04	7368115.5	587.62	208	-59.74/102	197	198	1	0.79
KBRC1843	203631.19	7367820.08	587.95	216	-60.02/103	78	89	11	0.70

KBRC1843	203631.19	7367820.08	587.95	216	-60.02/103	142	146	4	1.33
KBRC1843	203631.19	7367820.08	587.95	216	-60.02/103	150	152	2	1.01
KBRC1843	203631.19	7367820.08	587.95	216	-60.02/103	157	161	4	0.89
KBRC1843	203631.19	7367820.08	587.95	216	-60.02/103	166	167	1	1.92
KBRC1843	203631.19	7367820.08	587.95	216	-60.02/103	189	190	1	0.69
KBRC1843	203631.19	7367820.08	587.95	216	-60.02/103	198	203	5	0.45
KBRC1844	203655.1	7367740.6	587.84	234	-60.34/103	97	101	4	0.52
KBRC1844	203655.1	7367740.6	587.84	234	-60.34/103	138	144	6	5.88
KBRC1844	203655.1	7367740.6	587.84	234	-60.34/103	150	151	1	0.53
KBRC1844	203655.1	7367740.6	587.84	234	-60.34/103	165	166	1	0.84
KBRC1844	203655.1	7367740.6	587.84	234	-60.34/103	182	183	1	0.93
KBRC1844	203655.1	7367740.6	587.84	234	-60.34/103	194	195	1	1.24
KBRC1849	208409.41	7367277.45	585.28	240	-60.64/198	124	128	4	1.58
KBRC1850	208345.18	7367168.15	584.99	252	-60.4/200	140	144	4	0.76
KBRC1851	208508.42	7367151.82	585.03	300	-60.92/198	176	180	4	0.59
KBRC1853	208495.63	7367113.35	584.9	264	-60.33/198	116	120	4	2.44
KBRC1856	209271.21	7366910.18	583.61	132	-60.35/199	96	100	4	0.71
KBRC1857	209297.53	7366985.12	583.63	162	-60.59/199	72	76	4	0.65
KBRC1857	209297.53	7366985.12	583.63	162	-60.59/199	152	156	4	0.58
KBRC1859	207927.09	7367346.19	585.05	186	-60.67/199	76	80	4	0.74
KBRC1860	207934.8	7367381.24	585.22	162	-60.82/198	120	124	4	2.72
KBRC1861	207946.5	7367421.77	585.28	156	-60.59/199	32	36	4	0.54
KBRC1862	207961.93	7367457.42	585.38	156	-60.11/199	136	140	4	0.62
KBRC1863	203474.42	7368745.83	590.09	258	-55.3/104	125	126	1	1.02
KBRC1863	203474.42	7368745.83	590.09	258	-55.3/104	201	207	6	1.56
KBRC1863	203474.42	7368745.83	590.09	258	-55.3/104	214	235	21	1.22
KBRC1864	203474.77	7368798.31	590.08	330	-62/102	162	163	1	0.76
KBRC1864	203474.77	7368798.31	590.08	330	-62/102	203	204	1	1.22
KBRC1864	203474.77	7368798.31	590.08	330	-62/102	215	230	15	1.79
KBRC1864	203474.77	7368798.31	590.08	330	-62/102	236	237	1	0.65
KBRC1864	203474.77	7368798.31	590.08	330	-62/102	247	248	1	1.55
KBRC1864	203474.77	7368798.31	590.08	330	-62/102	279	280	1	1.43
KBRC1864	203474.77	7368798.31	590.08	330	-62/102	296	306	10	0.91
KBRC1865	203480.74	7368847.02	590.35	264	-60.12/104	93	94	1	0.53
KBRC1865	203480.74	7368847.02	590.35	264	-60.12/104	129	130	1	0.61
KBRC1865	203480.74	7368847.02	590.35	264	-60.12/104	226	234	8	1.43
KBRC1866	203442.89	7368702.08	589.09	252	-58.34/103	12	13	1	1.18
KBRC1866	203442.89	7368702.08	589.09	252	-58.34/103	117	118	1	0.74
KBRC1866	203442.89	7368702.08	589.09	252	-58.34/103	195	200	5	0.80
KBRC1866	203442.89	7368702.08	589.09	252	-58.34/103	219	225	6	0.70
KBRC1866	203442.89	7368702.08	589.09	252	-58.34/103	237	238	1	0.82
KBRC1867	203703.04	7367464.26	587.45	264	-60.3/100	100	101	1	0.59
KBRC1867	203703.04	7367464.26	587.45	264	-60.3/100	159	160	1	1.14
KBRC1867	203703.04	7367464.26	587.45	264	-60.3/100	171	193	22	3.79

| KBRC1867 | 203703.04 | 7367464.26 | 587.45 | 264 | $-60.3 / 100$ | 197 | 199 | 2 | 1.04 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KBRC1867 | 203703.04 | 7367464.26 | 587.45 | 264 | $-60.3 / 100$ | 207 | 208 | 0.87 | |
| KBRC1867 | 203703.04 | 7367464.26 | 587.45 | 264 | $-60.3 / 100$ | 234 | 238 | 4 | 0.66 |
| KBRC1868 | 203714.61 | 7367516.61 | 587.63 | 270 | $-60 / 103$ | 96 | 97 | 1 | 1.06 |
| KBRC1868 | 203714.61 | 7367516.61 | 587.63 | 270 | $-60 / 103$ | 204 | 206 | 2 | 0.65 |
| KBRC1868 | 203714.61 | 7367516.61 | 587.63 | 270 | $-60 / 103$ | 231 | 232 | 1 | 0.69 |
| KBRC1868 | 203714.61 | 7367516.61 | 587.63 | 270 | $-60 / 103$ | 247 | 249 | 2 | 0.61 |

Appendix 2

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria JORC Code explanation

Sampling technique techniques

- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.
- Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Material to the Public Report.
- In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.

Commentary

RC drilling at KGP and MGGP completed by Topdrill with the same techniques and process at both. For Reverse Circulation (RC) drilling 2 kg - 3 kg samples are split from dry 1 m bulk samples. The sample was collected through a cyclone and cone splitter. Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney
For regional first pass RC drilling 1m sample was collected in a bucket and then tipped in neat lines on the ground. The piles were then sampled by using a spear to collect a field composite ($4 \mathrm{~m} R \mathrm{RC}$) 2.0 kg to 3.0 kg sample which was then placed in a calico bag. Field duplicates were not collected for the regional RC drilling. CRM were inserted at a ratio of 1:30 composites for regional RC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. $+100-$ 200ppb will then have their corresponding 1 m rig split samples sent for fire assay with the below 1 m QAQC applied appropriate for use in JORC resource reporting

1 m RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
Samples were sent to the laboratory where they were pulverised to produce a 50 g charge for fire assay.
For regional aircore exploration (AC) drilling a primary sample was collected from the drill rig. The sample was collected in a bucket and then tipped in neat lines on the ground. The piles were then sampled by using a spear to collect a field composite $(4 \mathrm{~m} \mathrm{AC}) 2.0 \mathrm{~kg}$ to 3.0 kg sample which was then placed in a calico bag. The last 1 m interval for each regional AC hole (EOH) was sampled separately for multi element analysis.
Field duplicates were not collected for the regional AC drilling. CRM were inserted at a ratio of 1:30 composites for regional AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
Regional AC samples were sent to ALS laboratory where they were pulverised to produce a 25 g charge for aqua regia 51 elements including Au and element multielement analysis for the field charge for aqua
composites using ALS code AuME-TL43analysis.

Heap Leach AC was collected in 1m calicos using regional AC drilling techniques with a splitter off the cyclone, with drilling producing $2 \mathrm{~kg}-3 \mathrm{~kg}$ samples which are split from dry 1 m bulk samples. Field

Criteria JORC Code explanation

Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.
Sub-samplingtechniques sample sreparationand	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.

Commentary

duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. Samples were sent to the laboratory where they were pulverised to produce a 50 g charge for fire assay
RC: Topdrill Drilling drill rig was used to drill the RC drill holes: Hole diameter was 140 mm .
AC : Prospect Drilling was used for AC drilling using an 89 mm blade bit.
RC : Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney.

At the end of each metre the bit was lifted off the bottom to separate each metre drilled.
The majority of samples were of good quality with ground water having minimal effect on sample quality or recovery. There is no obvious relationship between sample recovery and grade.
AC: Visual recovery information was collected at the time of the AC drilling.
Reverse circulation chips were washed and stored in chip trays in 1 m intervals for the entire length of each hole. Chip trays were stored on site in a sealed container. Chips were visually inspected and logged by an on-site geologist to record lithology (including rock type, oxidation state, weathering, grain size, colour, mineralogy, and texture), alteration, mineralisation, veining, structure, sample quality (dry/wet, contamination) and approximate water flow down hole. Mineralisation, veining and water flow were quantitative or semi-quantitative in nature; the remainder of logging was qualitative

Logging is both qualitative and quantitative or semi-quantitative in nature
AC : AC chips were washed and stored in chip trays in 1 m intervals for the entire length of each hole. Holes of interest are retained, all others are disposed of. Chip trays of all EOH intervals are retained Chip trays were stored on site in a sealed container. Chips were visually inspected and logged by an on-site geologist to record lithology (including rock type, oxidation state, weathering, grain size, colour, mineralogy, and texture), alteration, mineralisation, veining, structure, sample quality dry/wet, contamination) and approximate water flow down hole. Mineralisation, veining and wate flow were quantitative or semi-quantitative in nature; the remainder of logging was qualitative

RC holes samples were split from dry, 1m bulk samples via a cone splitter directly from the cyclone.
RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.

The duplicates and CRM's were submitted to the lab using unique sample ID's.
$2 \mathrm{~kg}-3 \mathrm{~kg} \mathrm{RC}$ samples are submitted to the laboratory.

Criteria

JORC Code explanation

Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.
Verification of sampling assaying and	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.

Commentary

Samples are oven dried at $105^{\circ} \mathrm{C}$ then jaw crushed to -10 mm followed by a Boyd crush to a nominal -2 mm . Samples were rotary split to 2.5 kg . Samples were then pulverised in LM5 mills to 85% passing $75 \mu \mathrm{~m}$ under sample preparation code SP3000 which consists of a 5 -minute extended preparation for $\mathrm{RC} / \mathrm{Soil} / \mathrm{RAB}$. The extended time for the pulverisation is to improve the pulverisation of samples due to the presence of garnets in the samples.
All the samples were analysed for Au using the FA50AAS technique which is a 50 g lead collection fire assay.

This sample preparation technique is appropriate for the MGGP and KGP; and is standard industry practice for a gold deposit.

Samples greater than 3 kg are split prior to pulverizing and the remainder discarded.
Regional AC samples were collected as 4 m field composites using a spear from the individual 1 m sample piles on the ground. Field duplicates were not collected for the regional AC drilling. CRM were inserted at a ratio of 1:30 composites for AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. The CRM's were submitted to the lab using unique sample ID's. $2 \mathrm{~kg}-3 \mathrm{~kg}$ AC samples are submitted to the laboratory. Samples are oven dried at $105^{\circ} \mathrm{C}$ then crushed and pulverised

Heap Leach AC was collected in 1 m calicos using regional AC drilling Techniques with a splitter off the cyclone, with drilling producing $2 \mathrm{~kg}-3 \mathrm{~kg}$ samples which are split from dry 1 m bulk samples. Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. Samples were sent to the laboratory where they were pulverised to produce a 50 g charge for fire assay.

RC: Drilling samples were submitted to Jinnings and ALS in Perth. 1m RC samples were assayed by a 50 gm fire assay which is a total assay.

RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.

Regional AC drilling samples were submitted to ALS laboratory in Perth. No field duplicates were collected for the AC drilling. CRM were inserted at a ratio of $1: 30$ composites for the AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.

Logging and sampling were recorded directly into a Micromine Geobank template, which utilises lookup tables and in file validation on a Toughbook by the geologist on the rig. Validated data was sent to the database administrator in Perth who then carried out independent verifications using Maxwell's Datashed.

Criteria

JORC Code explanation

- Discuss any adjustment to assay data.

	- Discuss any adjustment to assay data.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.

Commentary

Assay results when received were plotted on section and were verified against neighbouring holes.
QAQC reports were generated on a hole-by-hole basis by the database administrator as results were received.

Capricorn Metals sampling, data collection in field is captured in an electronic logging system for geological, regolith, sample id, assay and surveying information.

All Drillhole collar positions were surveyed using hand held GPS. Drillhole location data was initially captured in the MGA94 grid system. Before further resource evaluation work the drillhole locations will be picked up with DGPS by qualified surveyors.

Down hole surveys were undertaken on 30 m increments from end of hole, using a Reflex down hole gyroscopic tool.

The natural surface topography was modelled using a DTM generated from airborne survey, this includes waste dumps and some in-pit waste dumping. Also available are pit surveys of the mining voids at the end of historical mining to enable depletion of the CMM resource. The pit surveys and topography surface were checked in Google Earth for accuracy. Horizontal point accuracy is expected to be $<5 \mathrm{~m}$ and vertical accuracy to 0.5 m . The reference datum was GDA94 and the projection was MGA Zone 50. Topographic control appears to be of good quality and is considered adequate for resource estimation.

Regional AC drillhole collar positions were surveyed before and after drilling using a handheld GPS Drillhole location data was captured in the MGA94 grid system.

Down hole surveys were not undertaken for the any of the drilling due to the shallow nature of the holes. Any regional AC intercepts will be followed up with infill RC drilling using downhole surveys and more accurate collar survey technique.
Heap Leach AC collar positions were surveyed using hand held GPS. Drillhole location data was initially captured in the MGA94 grid system. Before further resource evaluation work the drillhole locations will be picked up with DGPS by qualified surveyors.

RC and DD Samples were collected and analysed for each metre down the hole. Samples were collected and analysed for each metre down the hole.
RC hole spacing was between $50 \mathrm{~m} \mathrm{~N} \times 50 \mathrm{mE}$ and $25 \mathrm{~m} \mathrm{~N} \times 25 \mathrm{mE}$, sufficient for resource estimation

Regional AC samples were collected and analysed for gold and multielement by 4 m field composites down the hole, with the EOH individual metre sampled separately for multi element analysis. Hole spacing was predominantly $100 \mathrm{~m} \times 400 \mathrm{~m}, 200 \mathrm{~m} \times 200 \mathrm{~m}$ and $50 \mathrm{~m} \times 100 \mathrm{~m}$ for AC.

Heap Leach AC drilling was predominantly $12.5 \times 12.5 \mathrm{~m}$ spacing.

Criteria

Orientation of data
in relation to
geological geological structure

JORC Code explanation

- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

Sample security
The measures taken to ensure sample security

Audits or reviews

- The results of any audits or reviews of sampling techniques and data

Commentary

Drill lines are oriented across strike on an MGA grid. MGGP orebody dips at 80 degrees to the East and KGP 25 degrees to the west.

Holes in the drill Programmes have been mostly drilled at inclination of -55 to -60 degrees at MGGP and KGP. The orientation of the drilling is suitable for the mineralisation style and orientation of the target mineralisation.

Where possible the AC exploration drilling programmes are planned to be drilled perpendicular to the orientation of the geology. Significant mineralisation intervals in the AC will be followed up with infill RC drilling to better understand the orientation of mineralisation.

Calico sample bags are sealed into green bags/polyweave bags and cable tied. These bags were then sealed in bulka bags by company personnel and dispatched by third party contractor. In-company reconciliation is completed with laboratory assay returns.

The Competent Person for Exploration Results reported here has visited the project areas where sampling has taken place and has reviewed and confirmed the sampling procedures.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

Mineral tenement and land tenure status

JORC Code explanation

- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Commentary

MGGP: The resource is located across mining tenements held by wholly owned Capricorn subsidiaries METROVEX PTY LTD and CRIMSON METALS PTY LTD; being M 59/772, E 59/2450, E 59/2594, E 59/2606, G 59/11, G 59/12, G 59/13, G 59/14, G 59/15, G 59/16, G 59/17, G 59/18, G 59/48, G 59/70, L 59/140, L 59/45, L 59/46, L 59/53, M 59/328, M 59/402, M 59/403, M 59/404, P 59/2286, P 59/2287, P 59/2290, P 59/2291, P 59/2306, P 59/2309, P 59/2310.

All of the tenements are subject to a 1% NSR royalty to Avenger Projects Ltd, including gold production above 90,000 ounces. A royalty is also payable to St Barbara Limited on all gold production in excess of 20,000 ounces (excluding production from historic waste dumps and tailings) at the rate of $\$ 10$ per ounce, applicable to leases M 59/328, M 59/402, M 59/403, M 59/404, G 59/11, G 59/12, G 59/13, G 59/14, G 59/15, G 59/16, G 59/17, G 59/18, L 59/45, L 59/46, L $59 / 53$ No other known impediments exist to operate in the area.

KGP: The Bibra deposit is located in M 52/1070 held by Greenmount Resources, a wholly owned subsidiary of Capricorn Metals.

M52/1070 is within the area of granted E52/1711 exploration tenement in the Pilbara region of Western Australia. E52/1711 was acquired from BHPB in 2008. South32 (via the spin-out from BHPB) retain a 2% NSR whilst BHPB a claw-back provision whereby BHPB can elect to acquire a 70% equity in the project only if JORC compliant reported resources of $5,000,000$ ounces of gold and/or 120,000 tonnes of contained nickel have been delineated. The Nyiyaparli People hold Native

Criteria JORC Code explanation

Exploration done by other parties	• Acknowledgment and apprasal of exploration by other parties.	
Geology		

Commentary

Title over the area including E52/1711 and M52/1070. There is no known heritage or environmental impediments over the lease

No other known impediments exist to operate in the area.
MGGP: The Mt Gibson Gold Deposit (Mt Gibson) has a history of minor gold production dating back to the 1930's when prospectors operated small gold workings at Paynes-Crusoe and Tobias Find While the area was subject to previous prospecting and company exploration in smaller leaseholdings, the Mt. Gibson Gold Project was first held in more-or-less its present configuration and extent by Reynolds Australia, who commenced exploration in the early 1980's. Soil and laterite sampling resulted in several significant gold and base metal anomalies being defined; follow up rotary air blast (RAB), air core (AC), reverse circulation (RC) and diamond drilling Programmes outlined significant economic laterite and oxide resources. A joint venture between Reynolds Australia Metals and Forsayth Mining Limited (with FML as the operator) began operations in 1986, mining and processing 6.5 million tonnes of laterite ores defined by FML in 1984, followed later by oxide and sulphide ores defined by drilling beneath the laterite orebodies. The project was sold by Reynolds to Camelot Resources in 1995. Continuing exploration resulted in the discovery of further oxide resources, mainly on the Taurus Trend, and the underground quartz-sulphide deposit at Wombat. These resources were subsequently mined and processed, all mining being completed at the end of 1997 and final milling of low grade stockpiles completed in June of 1998. A 4Mt dump leach remained in operation until November 1998, producing 68,868 ounces of gold. Including the dump leach, a total of $16,477,88$ tonnes of ore was processed during the life of the operation, for 868,478 ounces of gold at an overal verage grade of $1.64 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.
KGP: Prior to Capricorn Metals, E52/1711 was held by Independence group (IGO) who undertook exploration between 2008 \& 2014. Prior to Independence group, WMC (BHPB) explored the area from 2004 to 2008
MGGP: The Mt Gibson Gold Project tenements are located at the southern extremity of the Retaliation Greenstone Belt, in the SW portion of the Yalgoo-Singleton Greenstone Belt in the Murchison Province of the Yilgarn Craton. The tenements are mostly covered by a veneer of alluvial quartz sands and laterite gravels, with sporadic greenstone subcrop and outcrop, increasingly exposed in the north of the project area. The mineralised laterite gravels are situated slightly down-slope from the lode deposits on the Gibson trend. Regionally, the greenstone belt has been metamorphosed to middle amphibolite facies and hosts a number of $\mathrm{Au}-\mathrm{Cu}$ deposits and prospects, including Golden Grove, 90 km to the northwest of Mt.Gibson

The lode style mineralisation at Mt. Gibson is predominantly hosted by three main trends:

The Gibson Trend

The majority of the known and mined mineralisation is hosted by this trend. It is hypothesised to have originally been a gold-copper-zinc rich Volcanogenic Hosted Massive Sulphide (VHMS) deposit that has been overprinted by a later hydrothermal gold mineralising event. This mineralised shear zone has

Criteria

JORC Code explanation

Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person

Commentary

an arcuate north-south to northeasterly strike (trending more north-easterly in the north) and extends

 for more than seven kilometres from the southern granite contact to beyond the Hornet ore body.The so-called "Mine Sequence" is around 400 metres wide and consists of a parcel of sheared, metamorphosed and chlorite-biotite-muscovite altered mafic volcanics. Numerous felsic porphyries intrude the Mine Sequence. Mineralisation is hosted within multiple sets of elongate lodes with strong strike continuity, which anastomose and pinch-swell along strike and to depth. The main lode systems include Hornet, Enterprise, Orion and S2.

The Taurus Trend

The north-westerly trending Taurus Trend lies west of and diagonal to the Gibson Trend Mineralisation is intimately associated with an apparently continuous felsic unit emplaced into the northwest trending shear and was discovered late in the life of the mining operation. It is characterised by discontinuous ore bodies, and strongly mineralised quartz-sulphide veining. The ore bodies on this trend include Sheldon and Wombat which, although not as continuous in strike as the ore bodies on the Gibson Trend, show a higher gold tenor.

The Highway Trend

The Highway Trend is a northeast trending shear zone, hosted by a mafic sequence in the western terrain, 11 km northwest of the main mining area. This trend hosts the Highway ore body, and the Phoenix and Aquarius Prospects. It shares many of the characteristics of the Gibson trend, but it appears to lack the VHMS mineralising event and has generally been regarded as a predominantly low-grade system, although work from previous explores suggest it may have greater persistence and significance than previously thought and hence justifies further attention. The project area also hosts a number of BIF and quartz hosted small mineral occurrences including Paynes-Crusoe and MacDonald's Find

KGP: Bibra is part of a large-scale Archaean aged gold mineralised system. The resource is hosted
 dipping structures; Laterite oxide mineralization has developed over the structures close to surface. The primary mineralisation is strata-bound with lineations identified as controlling higher-grade shoots. The deposit is oxidized to average depths of $50-70 \mathrm{~m}$.

All relevant drillhole information can be found in section 1 - "Sampling techniques", "Drilling techniques" and "Drill Sample Recovery" and the significant intercepts table.

Criteria

Data aggregation methods

Relationsh
between
mineralisation
widths
and
intercept lengths

Diagrams

Balanced

reporting
Other substantive exploration data

Further work

JORC Code explanation

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.
- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').
- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.
- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.
- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.
- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive

Commentary

Reported intercepts include a minimum of $0.5 \mathrm{~g} / \mathrm{t}$ Au value over a minimum length of 1 m with a maximum 2 m length of consecutive internal waste. No upper cuts have been applied. No aggregation methods have been applied for the rockchips. No metal equivalent values are used.

MGGP: The mineralisation dips steeply to the east, and drilling is generally orientated at 60 degrees to the west, meaning intercepts are roughly perpendicular to mineralisation in the majority of cases. Some vertical holes drilled from the base of mined pits and are therefore at a high degree to the mineralisation

KGP: At Bibra, the geometry of the mineralisation has already been defined from previous drilling programs. The intersection angle between drill angle and the perpendicular angle to the ore zone is less than 10 degrees.

Refer to the diagrams in the body of this report

The accompanying document is considered to be a balanced report with a suitable cautionary note

No other material information or data to report.

Further work includes continued resource infill RC drilling at both projects.

Commentary
 No Mineral Resource Estimation update being reported.

No Mineral Resource Estimation update being reported.

No Mineral Resource Estimation update being reported.	

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1 , and where relevant in section 2 , also apply to this section.)

| Criteria | JORC Code explanation |
| :--- | :--- | :--- |
| Database integrity | -Measures taken to ensure that data has not been corrupted by, for example, transcription or keying
 errors, between its initial collection and its use for Mineral Resource estimation purposes. |
| Site visits | - \quad Data validation procedures used. |

Criteria	JORC Code explanation	Commentary
Geological interpretation	- Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. - Nature of the data used and of any assumptions made. - The effect, if any, of alternative interpretations on Mineral Resource estimation. - The use of geology in guiding and controlling Mineral Resource estimation. - The factors affecting continuity both of grade and geology.	No Mineral Resource Estimation update being reported.
Dimensions	- The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	No Mineral Resource Estimation update being reported.
Estimation and modelling techniques	- The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. - The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. - The assumptions made regarding recovery of by-products. - Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). - In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. - Any assumptions behind modelling of selective mining units. - Any assumptions about correlation between variables. - Description of how the geological interpretation was used to control the resource estimates. - Discussion of basis for using or not using grade cutting or capping. - The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	No Mineral Resource Estimation update being reported.
Moisture	- Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	No Mineral Resource Estimation update being reported.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	No Mineral Resource Estimation update being reported.
Mining factors or assumptions	- Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	No Mineral Resource Estimation update being reported.
Metallurgical factors assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	No Mineral Resource Estimation update being reported.

Criteria

| Environmental | |
| :--- | :--- | :--- |
| factors | or |
| assumptions | |

assumptions

Bulk density

- Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.
- The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.
- Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.
Classification
- The basis for the classification of the Mineral Resources into varying confidence categories.
- Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).
- Whether the result appropriately reflects the Competent Person's view of the deposit

Audits or reviews

Discussion of relative accuracy/ confidence

JORC Code explanation

- Assumptions made regarding possible waste and process residue disposal options. It is always Assumptions made regarding possible waste and process residue disposal options. It is always
necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.
- The results of any audits or reviews of Mineral Resource estimates.
- Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate
- The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.
- These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.

Commentary

No Mineral Resource Estimation update being reported.

No Mineral Resource Estimation update being reported.

No Mineral Resource Estimation update being reported.
No Mineral Resource Estimation update being reported.

No Mineral Resource Estimation update being reported.

Section 4 Estimation and Reporting of Ore Reserves

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria

 JORC Code explanation- Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. - Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of,
$\begin{array}{lr}\text { Mineral Resource } \\ \text { estimate } & \text { for }\end{array}$ the Ore Reserves.
\qquad

Commentary

Criteria	JORC Code explanation	Commentary
conversion to Ore Reserves		
Site visits	- Comment on any site visits undertaken by the Competent Person and the outcome of those visits. - If no site visits have been undertaken indicate why this is the case.	No Ore Reserve being reported.
Study status	- The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. - The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered.	No Ore Reserve being reported.
Cut-off parameters	- The basis of the cut-off grade(s) or quality parameters applied.	No Ore Reserve being reported.
Mining factors or assumptions	- The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). - The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. - The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. - The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). - The mining dilution factors used. - The mining recovery factors used. - Any minimum mining widths used. - The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. - The infrastructure requirements of the selected mining methods.	No Ore Reserve being reported.
Metallurgical factors assumptions	- The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. - Whether the metallurgical process is well-tested technology or novel in nature. - The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. - Any assumptions or allowances made for deleterious elements. - The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. - For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?	No Ore Reserve being reported.
Environmental	- The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	No Ore Reserve being reported.

Criteria	JORC Code explanation	Commentary
Infrastructure	- The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	No Ore Reserve being reported.
Costs	- The derivation of, or assumptions made, regarding projected capital costs in the study. - The methodology used to estimate operating costs. - Allowances made for the content of deleterious elements. - The derivation of assumptions made of metal or commodity price(s), for the principal minerals and co- products. - The source of exchange rates used in the study. - Derivation of transportation charges. - The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. - The allowances made for royalties payable, both Government and private.	No Ore Reserve being reported.
Revenue factors	- The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. - The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products.	No Ore Reserve being reported.
Market assessment	- The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. - A customer and competitor analysis along with the identification of likely market windows for the product. - Price and volume forecasts and the basis for these forecasts. - For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract.	No Ore Reserve being reported.
Economic	- The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. - NPV ranges and sensitivity to variations in the significant assumptions and inputs.	No Ore Reserve being reported.
Social	- The status of agreements with key stakeholders and matters leading to social licence to operate.	No Ore Reserve being reported.
Other	- To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: - Any identified material naturally occurring risks. - The status of material legal agreements and marketing arrangements. - The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.	No Ore Reserve being reported.
Classification	- The basis for the classification of the Ore Reserves into varying confidence categories.	No Ore Reserve being reported.

Criteria JORC Code explanation

	\bullet
Audits or reviews	\bullet
Discussion of relative accuracy/ confidence	\bullet

- Whether the result appropriately reflects the Competent Person's view of the deposit
- The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any).

Discussion of
relative accuracy/ confidence

- Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy
of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of a qualitative
- The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.
- Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage.
- It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.

Commentary

[^0]: *significant intercepts outside the current 2022 MRE
 ** Samples from heap leach drilling drilling
 ${ }^{* *} 4 m$ Composite sample from western exploration/sterilisation hole outside the current 2022 MRE

